Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Center-by-metabelian groups of prime exponent


Author: Jay I. Miller
Journal: Trans. Amer. Math. Soc. 249 (1979), 217-224
MSC: Primary 20E15; Secondary 20F50
DOI: https://doi.org/10.1090/S0002-9947-1979-0526319-5
MathSciNet review: 526319
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that a center-by-metabelian group of prime exponent p is nilpotent of class at most p, and this result is best possible. The proof is based on techniques dealing with varieties of groups.


References [Enhancements On Off] (What's this?)

  • [1] W. Brisley, On varieties of metabelian p-groups, and their laws, J. Austral. Math. Soc. 7 (1967), 64-80. MR 0207832 (34:7646)
  • [2] C. K. Gupta, A faithful matrix representation for certain centre-by-metabelian groups, J. Austral. Math. Soc. 10 (1969), 451-454. MR 0260893 (41:5513)
  • [3] M. Hall, Jr., The theory of groups, Macmillan, New York, 1959. MR 0103215 (21:1996)
  • [4] H. Meier-Wunderli, Über endliche p-Gruppen, deren Elementen der Gleichung $ {x^p} \,=\, 1$ genügen, Comment. Math. Helv. 24 (1950), 18-45. MR 0034393 (11:579e)
  • [5] -, Metabelsche Gruppen, Comment. Math. Helv. 25 (1951), 1-10. MR 0040296 (12:671c)
  • [6] H. Neumann, Varieties of groups, Springer-Verlag, New York, 1967. MR 0215899 (35:6734)
  • [7] D. J. S. Robinson, Finiteness conditions and generalized soluble groups, Part 2, Springer-Verlag, New York, 1972. MR 0332990 (48:11315)
  • [8] P. M. Weichsel, Regular p-groups and varieties, Math. Z. 95 (1967), 223-231. MR 0204525 (34:4364)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20E15, 20F50

Retrieve articles in all journals with MSC: 20E15, 20F50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1979-0526319-5
Keywords: Basic, basis, center-by-metabelian, Engel law, law, regular, relatively free, variety
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society