Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)


Noncollision singularities in the four-body problem

Author: Robert Orrin Shelton
Journal: Trans. Amer. Math. Soc. 249 (1979), 225-259
MSC: Primary 70F10; Secondary 58E05, 58F05
MathSciNet review: 525672
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that if there is a singularity in a solution of the four-body problem which is not a collision then the motion of the bodies near the singularity is nearly one-dimensional. This is established by grouping the bodies into natural clusters and showing the angular momentum of each cluster with respect to its center of mass tends to zero near the singularity. This is related to Sperling's proof of von Zeipel's theorem.

References [Enhancements On Off] (What's this?)

  • [1] P. Painlevé, Leçons sur la théorie analytique des équations differentielles (Stockholm, 1895), Hermann, Paris, 1897.
  • [2] H. von Zeipel, Sur les singularités du problème des n corps, Ark. Mat. Astr. Fys. (32) 4 (1908).
  • [3] Hans J. Sperling, On the real singularities of the 𝑁-body problem, J. Reine Angew. Math. 245 (1970), 15–40. MR 0290630 (44 #7810)
  • [4] J. Mather and R. McGehee, Orbits for the collinear four-body problem which become unbounded infinite time, Battelle Recontres, 1974 (to appear).
  • [5] Donald G. Saari, Singularities of Newtonian gravitational systems, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York, 1973, pp. 479–487. MR 0345474 (49 #10210)
  • [6] Carl Ludwig Siegel and Jürgen K. Moser, Lectures on celestial mechanics, Springer-Verlag, New York-Heidelberg, 1971. Translation by Charles I. Kalme; Die Grundlehren der mathematischen Wissenschaften, Band 187. MR 0502448 (58 #19464)
  • [7] Aurel Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Mathematical Series, v. 5, Princeton University Press, Princeton, N. J., 1941. MR 0005824 (3,215b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 70F10, 58E05, 58F05

Retrieve articles in all journals with MSC: 70F10, 58E05, 58F05

Additional Information

PII: S 0002-9947(1979)0525672-6
Article copyright: © Copyright 1979 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia