Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Fourier inversion of invariant integrals on semisimple real Lie groups


Author: Rebecca A. Herb
Journal: Trans. Amer. Math. Soc. 249 (1979), 281-302
MSC: Primary 22E30
DOI: https://doi.org/10.1090/S0002-9947-1979-0525674-X
MathSciNet review: 525674
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let G be a connected, semisimple real Lie group with finite center. Associated with every regular semisimple element g of G is a tempered invariant distribution $ { \Lambda _g}$ given by an orbital integral. This paper gives an inductive formula for computing the Fourier transform of $ { \Lambda _g}$ in terms of the space of tempered invariant eigendistributions of G.


References [Enhancements On Off] (What's this?)

  • [1] Harish-Chandra, (a) A formula for semisimple Lie groups, Amer. J. Math. 79 (1957), 733-760. MR 0096138 (20:2633)
  • 1. (b) Some results on an invariant integral on a semisimple Lie algebra, Ann. of Math. (2) 80 (1964), 551-593. MR 0180629 (31:4862b)
  • 2. (c) Invariant eigendistributions on a semisimple Lie group, Trans. Amer. Math. Soc. 119 (1965), 457-508. MR 0180631 (31:4862d)
  • 3. (d) Discrete series for semisimple Lie groups. I, Acta Math. 113 (1965), 241-318. MR 0219665 (36:2744)
  • 4. (e) Two theorems on semisimple Lie groups, Ann. of Math. (2) 83 (1966), 74-128. MR 0194556 (33:2766)
  • 5. (f) Discrete series on semisimple Lie groups. II, Acta Math. 116 (1966), 1-111. MR 0219666 (36:2745)
  • [2] R. Herb, Fourier inversion on semisimple Lie groups of real rank two, Ph. D. Thesis, Univ. of Washington, Seattle, Wash., 1974.
  • [3] R. Herb and P. Sally, Singular invariant eigendistributions as characters, Bull. Amer. Math. Soc. 83 (1977), 252-254. MR 0480875 (58:1024)
  • [4] R. Lipsman, On the characters and equivalence of continuous series representations, J. Math. Soc. Japan 23 (1971), 452-480. MR 0289718 (44:6906)
  • [5] D. Ragozin and G. Warner, On a method of computing multiplicities in $ {L_2}\left( {\Gamma \,\backslash \,G} \right)$ (to appear).
  • [6] P. Sally and G Warner, The Fourier transform on semisimple Lie groups of real rank one, Acta Math. 131 (1973), 1-26. MR 0450461 (56:8755)
  • [7] W. Schmid, On the characters of the discrete series, Invent. Math. 30 (1975), 47-144. MR 0396854 (53:714)
  • [8] G. Warner, Harmonic analysis on semisimple Lie groups. I, II, Springer-Verlag, Berlin and New York, 1972.
  • [9] J. Wolf, Unitary representations on partially holomorphic cohomology spaces, Mem. Amer. Math. Soc. No. 138 (1974). MR 0393350 (52:14160)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E30

Retrieve articles in all journals with MSC: 22E30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1979-0525674-X
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society