A 3-LOCAL CHARACTERIZATION OF $L_4(2)$

BY

LARRY FINKELSTEIN1 AND DANIEL FROHARDT2

Abstract. Recent work of Gorenstein and Lyons on finite simple groups has led to standard form problems for odd primes. The present paper classifies certain simple groups which have a standard 3-component of type $L_3(2)$.

Introduction. D. Gorenstein and R. Lyons [8] have recently shown that any "minimal unknown" simple group G of characteristic 2 type with $e(G) > 4$ must satisfy one of three specific conditions. In [3], we consider a special case of one of those conditions. Here, we obtain characterizations of groups with $e(G) = 3$ which satisfy hypotheses analogous to those in that case.

We are concerned with the following hypothesis.

(\mathcal{K}_n): G is a group, b is an element of G of order 3, and $J = O^3(E(C(b)))$.

Furthermore, the following conditions hold.

(a) $J/Z(J) \cong L_n(2)$;
(b) $C(J)$ has cyclic Sylow 3-subgroups;
(c) $\langle b \rangle$ is not strongly closed in $C(b)$; and
(d) $m_{23}(G) = m_3(C(b))$.

Briefly, \mathcal{K}_n says that G has a standard 3-component of type $L_n(2)$ satisfying the Gorenstein-Lyons conditions. In the general case, the statement of the Gorenstein-Lyons conditions is somewhat more technical.

We also remark that by results of Schur [12] and Steinberg [13], either $J \cong L_n(2)$ or $n = 3$ or 4 and J is the unique central extension $L_n(2)$ of $L_n(2)$ by Z_2.

The two main results in this paper are:

THEOREM A. Let G satisfy \mathcal{K}_4 or \mathcal{K}_5 and assume that $F^*(G)$ is simple and that $b \notin GJ$. Then $b \notin F^*(G)$ and $F^*(G)$ has Sylow 3-subgroups of type $Z_3 \times Z_3$. In particular, G is not simple.

THEOREM B. Let G be a finite simple group of characteristic 2 type which satisfies \mathcal{K}_5. Then $G \cong L_4(2)$.

Received by the editors August 9, 1977 and, in revised form, February 27, 1978.

AMS (MOS) subject classifications (1970). Primary 20D05.

1Supported in part by NSF Grant MCS 76-06997.
2Supported in part by a Wayne State University faculty research award.
1. Preliminary lemmas. In this section we collect some properties of \(L_4(2) \) and \(L_5(2) \) which will be useful in the proofs of Theorems A and B. We also derive some elementary consequences of \(\mathcal{X}_4 \) and \(\mathcal{X}_5 \).

Lemma 1.1. Let \(G = L_n(2) \), \(n > 4 \), and let \(t \) be an involution in the center of a Sylow 2-subgroup of \(G \). Then the following statements hold.

(a) \(C(t) = TL \) where \(T = O_2(C(t)) \) is extra-special of type \(2^{2n-3} \) and \(L \cong L_{n-2}(2) \);
(b) \(T \) contains 2 elementary abelian \(L \)-invariant subgroups \(U \) and \(V \) of rank \(n - 1 \);
(c) \(L \) acts decomposably on \(U \) and on \(V \);
(d) \(C(t) \) acts on \(\text{Inv}(T) \) with the following orbits: \(\{t\} \), \(U \setminus \langle t \rangle \), \(V \setminus \langle t \rangle \), \(\text{Inv}(T) \setminus \text{Inv}(U) \cup \text{Inv}(V) \);
(e) \(t^G \cap T = U^T \cup V^T \cup \{t\} \);
(f) if \(H = \text{Aut} \, G \), then \(T = O_2(C_H(t)) \).

Proof. See Suzuki [14].

Lemma 1.2. Let \(H = \text{Aut}(L_n(2)) \), \(n = 4 \) or 5, and set \(G = H' \). Then \(G = L_n(2) \) and the following conditions hold:

(a) \(G \) contains a Sylow 3-subgroup \(P \) of type \(F_9 \);
(b) \(C_H(P) = P \times \langle \tau \rangle \) where \(\tau \in H \setminus G \) is an involution, \(C_G(\tau) = \Sigma_6 \), and \(H = G\langle \tau \rangle \);
(c) \(N_G(P) = D \) where \(D \) is dihedral of order 8;
(d) \(G \) has 2 classes of elements of order 3.

Letting \(\alpha \) and \(\beta \) be representatives of the two conjugacy classes of elements of order 3,

(e) \(N_H(\langle \alpha \rangle) = \langle \alpha, s \rangle \times K\langle \tau \rangle \) where \(\langle \alpha, s \rangle \cong L_2(2) \), \(K \cong L_2(4) \), and \(\langle \alpha, s \rangle = G \cdot C_K(\tau) \);
(f) \(N_H(\langle \beta \rangle) = \langle \beta, t \rangle \times L\langle \tau \rangle \) where \(\langle \beta, t \rangle \cong L_2(2) \), \(L \cong L_{n-2}(2) \) and \(\langle \beta, t \rangle = G \cdot C_L(\tau) \); and
(g) \(C_G(t) \) contains a Sylow 2-subgroup of \(G \) and \(C_G(s) \) does not contain a Sylow 2-subgroup of \(G \).

(h) \(\langle \alpha \rangle \) and \(\langle \beta \rangle \) are each contained in a subgroup of \(G \) of type \(L_2(4) \).

Proof. These results all follow from routine computations.

Lemma 1.3. Assume that \(G, b, \) and \(J \) satisfy \(\mathcal{X}_n \) where \(n = 4 \) or 5. Let \(B \in \text{Syl}_3(\text{C}(b)) \) and set \(B_0 = B \cap J \). Then \(B = \langle b \rangle \times B_0 \) and one of the following is true.

(i) \(b \notin GJ, N(B)/C^*(B) = \Sigma_4 \times Z_2 \) and \(\langle b \rangle^{N(B)} = \mathcal{S}_1(B) \setminus \mathcal{S}_1(B_0) \).
(ii) \(b \in GJ, N(B)/C^*(B) = \Sigma_4 \) and elements \(b_1, b_2 \in B_0 \) can be chosen so that \(B_0 = \langle b_1, b_2 \rangle \) and \(N(B)/C(B) \) acts as the full monomial group on \(B \) with respect to the basis \(\{b, b_1, b_2\} \).
Furthermore, in case (ii), $N(B)$ controls fusion in B.

Proof. $B = B_0 \times C_B(J)$ because $J \triangleleft C(b)$ and $\text{Out} J$ is a 3'-group. Setting $B_1 = C_B(J)$, we need to show that $B_1 = \langle b \rangle$. By assumption B_1 is cyclic, and B_0 is elementary abelian. Therefore B is abelian and $\mathfrak{U}(B) = \mathfrak{U}(B_0)$. If $|B_1| > 3$, then $\langle b \rangle = \Omega_1(\mathfrak{U}(B))$ is strongly closed in B, contrary to hypothesis. Therefore $B_1 = \langle b \rangle$, and $B \simeq E_{27}$.

Let $N = N(B)$ and $N = N/C^*(B)$. Then there is a natural injection $\bar{N} \hookrightarrow PGL(3, 3) \simeq SL(3, 3)$ so we can identify \bar{N} with its image in $SL(3, 3)$. Let $\tau \in N_J(B)$ be an involution which inverts B_0, so that $\langle b \rangle = C_B(\tau)$. We have $C_{\bar{N}}(\tau) < N_{\bar{N}}(\langle b \rangle) = \overline{C(b) \cap N(B)}$, so that $C_{\bar{N}}(\tau) \simeq D_8$. Inspection of 2-local and 3-local subgroups of $SL(3, 3)$ yields that either $\bar{N} \simeq F_9 \cdot Z_8 \simeq S_4$ or $\bar{N} \simeq \Sigma_4$. In the former case \bar{N} is the stabilizer of a hyperplane of B which must be B_0, whence (a) holds.

Assume for the rest of the proof that $\bar{N} \simeq \Sigma_4$. Then $|\bar{N}| = 3$, so $\langle b \rangle$ has 3 N-conjugates. $C_{\bar{N}}(b)$ has orbits of lengths 1, 2, 2, 4, and 4 on $\mathfrak{U}_1(B)$ so $\langle b \rangle$ must fuse to exactly one of the orbits of length 2. Letting $\langle b_1 \rangle$ and $\langle b_2 \rangle$ be the groups in that orbit, we have $B_0 = \langle b_1, b_2 \rangle$. Since $C_{\bar{N}}(b)/C(B)$ acts as the full monomial group on B_0 with respect to $\{b_1, b_2\}$, we conclude that $N/C(B)$ acts as the full monomial group on B with respect to $\{b, b_1, b_2\}$.

It remains to show that $N(B)$ controls fusion in B. If $P \in \text{Syl}_3(N(B))$, then $P \simeq Z_3 \times Z_3$ by the above paragraph, so $B = J(P)$. Therefore B is weakly closed in P and $N(P) < N(B)$. It follows that $P \in \text{Syl}_3(G)$ and that $N(B)$ controls fusion in B with respect to G.

Lemma 1.4. Assume that $G, b,$ and L satisfy \mathfrak{H}_n, where $n = 4$ or 5. Let $B \in \text{Syl}_3(C(b))$, and set $X = O_{3^+}(C(b))$. Assume that X has odd order and that either $|C(B)|$ is odd or $n = 5$. Then X is a normal Hall $\{2, 3\}$-subgroup of $C(B)$ and $X = O_{3^+}(C(A))$ for every group $A < B$ with $b \in_G A$. Finally, one of the following holds:

(i) $C(b) = \langle b \rangle \times J \times X$, or

(ii) $C(B)$ has even order.

Proof. It follows from Lemma 1.2(b) that $[C(B) : BX] < 2$. Therefore X is a normal $\{2, 3\}$-complement for $C(B)$ and $X = O_{3^+}(C(a))$ for every $a \in b^G \cap C(b)$. To verify the second assertion, it suffices to assume that A is an E_2-subgroup of B containing $\langle b \rangle$. Then $C(A)$ normalizes J and $O_{3^+}(C(A)/C(J) \cap C(J)) = 1$ by Lemma 1.2(b), (e), (f). Since $X = O_{3^+}(C(A) \cap C(J))$, we have $X = O_{3^+}(C(A))$. For the last assertion, set $C = C(b)$ and assume that $C(B)$ has odd order. Then $C_J(J) = \langle b \rangle \times X$ by transfer, so $C = N_C(J) = J \times \langle b \rangle \times X$ by Lemma 1.2(b).
Lemma 1.5. Let $J \cong L_5(2)$ act faithfully on $U \cong E_{25}$ with $C_U(J) \neq 1$. Then $U = [U, J] \times C_U(J)$.

Proof. Assume the contrary. Then $C_U(J) = \langle t \rangle$ has order 2 and J acts semiregularly on the set Ω of complements to $\langle t \rangle$ in U. As $|\Omega| = 32$ and J has a subgroup of order 31, it follows that J is doubly transitive on Ω. But $L_5(2)$ has no doubly transitive representations of degree 32 by [2], a contradiction.

Lemma 1.6. Assume that $J \cong L_5(2)$, that $\beta \in J$ has order 3 and that J acts on the 2-group T so that $C_T(\beta) < T_0$ where T_0 is J-invariant. Then $T = T_0$.

Proof. It suffices to assume that $T_0 = 1$. By Lemma 1.2(h), we can choose $\gamma \in J$ of order 5 so that $\langle \beta, \gamma \rangle \cong L_2(4)$. Then T is the direct product of natural $L_2(4)$-modules by [10], so $C_T(\gamma) = 1$. Since $\langle \gamma \rangle$ acts fixed point-free on a subgroup D of J of order 31, we have $[D, T] = 1$. Thus J centralizes T and $T = 1$.

2. Groups of small 3-rank. In this section, we derive two propositions about configurations which arise in the proofs of Theorems A and B.

Proposition 2.1. Assume that $G = LB$ is a finite group such that $L = F^*(G)$ is simple and $B \not\subset L$ has order 3. Assume further that

(i) $C(B) = B \times K \times O_3\langle C(B) \rangle$ where $K \cong L_2(4)$.
(ii) If $A \in \text{Syl}_3(F)$, then $C(A)$ has odd order.
(iii) If $P = \langle B, A \rangle \in \text{Syl}_3(C(B))$ and $B_1 \in \mathfrak{S}_1(P) - \{A\}$, then $C(B_1) \cong C(B)$.
(iv) $m_{2,3}(L) = 1$.

Then $L \cong L_2(125), L_2(64)$ or $L_3(4)$.

Proof. Let $\mathfrak{S}_1(P) = \{A, B, B_1, B_2\}$, let $U \in \mathfrak{S}_R^*(P; 2)$ and let $U < T \in \mathfrak{S}_R^*(P, 2)$. Then $C_T(A) = 1$ so $T = C_T(B)C_T(B_1)C_T(B_2)$. Hypotheses (i) and (ii) imply that $U \in \text{Syl}_2(C(B))$, so $U = C_T(B)$ and $|C_T(B_i)| < 4$ for $i = 1, 2$ by hypothesis (iii). Either $U < Z(T)$ or $1 \neq C_T(B_i) < Z(T)$ for $i = 1, 2$. In the latter case, we may relabel B and B_i without affecting the hypotheses of the theorem to obtain $U < Z(T)$.

By the Frattini argument, $N(U) = C(U) \cdot (C(B) \cap N(U)) = C_L(U)(C(B) \cap N(U))$. Setting $C = C_L(U)$, we have $3 \mid |C|$ because $C_C(B)$ has 3'-order. Therefore $T \in \text{Syl}_2(C)$ and in fact $T \in \text{Syl}_2(N(U))$. By the preceding paragraph, $|T| = 4^n$ for $n = 1, 2, 3$. We consider each possibility in turn.

Case 1. $n = 1$. Then $U = T \in \text{Syl}_2(L)$, so $L \cong L_2(q)$ for some $q \equiv 3$ or 5 (mod 8) by Walter [15]. By elementary properties of $\text{Aut}(L_2(q))$, $C_L(B) \cong L_2(q^{1/3})$. Therefore $q = 125$, and the proposition holds.
Case 2. \(n = 2 \). Then \(T \) is elementary abelian of order 16 because \(C_T(A) = 1 \). Set \(N_1 = N(T) \cap N(P) \). Then \(A < N_1 \) and \(|C_{N_1}(A)| \) is odd by hypothesis, so \(|N_1 : P| < 2 \). Inspecting the subgroups of \(L_4(2) \), we then have \(|N(T) : C(T)|_2 < 2 \). Let \(S \in \text{Syl}_2(N(T)) \). Then either \(S = T \) or \(S \cong E_4 \sim Z_2 \). In the latter case, \(T = J(S) \), so \(S \in \text{Syl}_2(L) \) in either case. But no simple group has Sylow 2-subgroup of type \(E_4 \sim Z_2 \) by Corollary 6 of [6], so \(S = T \). But then [15] forces \(L \cong L_2(16) \), a contradiction as \(B \) must act as a group of outer automorphisms of \(L \). Thus Case 2 does not occur.

Case 3. \(n = 3 \). We argue that \(T \in \text{Syl}_2(L) \). It suffices to show that \(N(T) \) is 3-nilpotent since \(T \in \text{Nil}(P; 2) \). Set \(N = N(T) \). By hypothesis (i), \(N_n(B) < C(B) \cap N(U) \) has a normal 3-complement. Similarly, \(N_n(B_i) \) is 3-nilpotent for \(i = 1, 2 \) because \(C_T(B_i) \neq 1 \). This implies that \(\text{Aut}_n(P) \) is a 3-group, so \(N_n(P) \) is 3-nilpotent. If \(P \subseteq Q \subseteq \text{Syl}_3(N) \), then \(Q \cap L \) is cyclic by hypothesis (iv). It follows that \(P = \Omega_3(Q) \). Since \(A = \Omega_3(Q \cap L) \), \(N_n(A) \cap L \) is 3-constrained and \(N_n(A) = O_3(N_n(A))(N_n(A) \cap N_n(P)) \) by the Frattini argument. Therefore \(N_n(A) \) is 3-nilpotent and \(N \) is 3-nilpotent by the Frobenius transfer theorem.

If \(T \) is abelian, then \(G \cong L_2(64) \) by Walter [15]. Otherwise \(T \) is of type \(L_3(4) \) [7, p. 16] in which case \(L \cong L_3(4) \) by Collins [1]. The proof is complete.

Lemma 2.2. Let \(R \) be a solvable group with a normal subgroup \(S \) of index 2 such that \(O_3(R) \leq S \). Assume that \(T \cong Z_3 \) is a Sylow 3-subgroup of \(S \) and that \(x \in \text{Inv}(R) \setminus \text{Inv}(S) \). Then \(x \in R \cdot N(T) \).

Proof. Let \(R \) be a counterexample of minimal order and let \(N \) be a minimal normal subgroup of \(R \). Then \(N \) is an elementary abelian \(p \)-group for some \(p \neq 3 \) as \(R \) is solvable and \(O_3(R) = 1 \) by assumption. Setting \(R = R/N \) and applying induction, \(x \in R \cdot N(T) \). That is \(x \in R \cdot N \cdot N(T) \), so \(R = N \cdot N(T) \) by choice of \(R \). Furthermore \(p = 2 \), as otherwise \(N(T) \) contains a Sylow 2-subgroup of \(R \). Let \(x = nh \) for \(n \in N \) and \(h \in N(T) \setminus N_3(T) \). Our choice of \(R \) implies that \(R = \langle T, x \rangle = NT\langle h \rangle \). Evidently, \(h^2 \in N \), so \(R/N \cong \Sigma_3 \). Therefore \(N \cong E_4 \) and \(R \cong \Sigma_4 \) is not a counterexample.

Proposition 2.3. Let \(G \) be a finite group with an elementary abelian Sylow 3-subgroup \(P = \langle A, B \rangle \) of order 9. Assume that the following conditions are satisfied:

(i) \(E(C(B)) = K \cong L_2(4) \) with \(A < K \).

(ii) \(O_3(C(B)) \) has odd order.

(iii) One of the following holds:

(a) \(N(A) < N(B) \) and \(C(P) \) has odd order.

(b) \(N(A) < N(B) \) and \(O_3(C(B)) = 1 \).

(c) \(E(C(A)) \cong L_3(2) \) and \(O_3(C(A)) = O_3(C(B)) \).

Then \(G = O_3(G)N(K) \).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. We first observe that A and B are strongly closed in P with respect to G. In fact, it is evident from hypothesis (iii) that $A \neq G B$. Also, $C(B)$ has 3 orbits on $\mathfrak{S}_1(P)$. As $N(P)/P$ is a $3'$-group, it then follows that A and B are each normal in $N(P)$. But $N(P)$ controls fusion in P, so the assertion is proved.

Let G be a counterexample of minimal order. Then $O_3(G) = 1$. It follows easily from assumption (i) that $O_3(G) = 1$. Thus $F^*(G) = E(G)$ is the direct product of simple groups. Set $E = E(G)$.

We argue that $P \leq E$. Set $Q = P \cap E$ and assume that $Q < P$. Then $Q \neq 1$ because $3 | |E|$. Since $Q \leq N(P)$, we have that $Q = A$ or $Q = B$. We shall use a 3-local characterization to obtain a contradiction. The claim is that either $|C_E(Q)| = 6$ or $|C_E(Q)|$ is odd. In fact, by transfer, $C_E(Q) < Q \cdot O_3(C(Q))$, hence $|C_E(Q)|$ is odd if $Q = B$ or if $Q = A$ and either (iii)(a) or (iii)(γ) holds. On the other hand, if $Q = A$ and (iii)(β) holds, then $|C_E(Q)| = 6$. So the claim is true in all cases. Therefore $E = L_2(q)$, $L_3(q)$ or $U_3(q)$ for appropriate q by results of [4], [5] and [11]. In any case, $Out(E)$ is solvable, so $K < E$ which gives $Q = A$. If (iii)(γ) holds, then a similar argument shows that $Q = B$ which is absurd. If (iii)(β) holds, then $E = L_2(p)$ for some $p \in \{5, 7, 11, 13\}$ and $Out(E)$ is a $3'$ group. But $C(E) = 1$ and $P \leq N(E)$ then yield a contradiction. Therefore (iii)(α) must hold. Let τ be an involution in $N_K(A)$. Then $\tau \in E$, and $A = [C_E(A), \tau]$. It follows that $E = L_2(4)$, $L_3(2)$ or $U_3(4)$. But none of these groups admit an outer automorphism of order 3 in contradiction to $B < N(E)$ and $C(E) = 1$. This completes the argument that $P \leq E$.

We now show that E is simple. If not, then $E = E_1 \times E_2 \times \cdots \times E_n$, with $2 \leq n$ and E_i simple, $1 \leq i \leq n$. As $C(P)$ is 3-solvable by hypotheses (i) and (ii), $E = E_1 \times E_2$ with $P \cap E_i \neq 1$, $i = 1, 2$. As $P \cap E_i$ is inverted in E_i, $I_1 = 1, 2$, it follows from $N_{E_i}(B) \leq C_{E_i}(B)$, $I_1 = 1, 2$, together with $O_3(C(B)) = C_E(B) = B \times K$ that, without loss, we may set $P \cap E_i = A$ and $P \cap E_2 = B$. But then $E_1 = K$ and therefore $E_1 \leq G$ by hypothesis (iii) which contradicts our choice of G. We conclude that E is simple. Therefore $E = G$ by choice of G.

We shall now apply a result of G. Higman [7] to contradict the simplicity of G. Let $D \in \mathfrak{S}_1(P) \setminus \{A, B\}$ and for every subgroup X of G, let $\mathfrak{S}(X)$ denote the set of involutions of G which invert X. Higman's result asserts that if $t \in Inv(G)$, then two of the following three sets are nonempty: $\mathfrak{S}(A)^G \cap \{t\}$, $\mathfrak{S}(B)^G \cap \{t\}$, $\mathfrak{S}(D)^G \cap \{t\}$. In order to apply this result, we require some information about $\mathfrak{S}(A)$, $\mathfrak{S}(B)$ and $\mathfrak{S}(D)$.

We first claim that $\mathfrak{S}(D) \subseteq \mathfrak{S}(P)^G$. To see this, set $H = N(D)$, $H_0 = C(D)$ and $H = H/D$. By the first paragraph, $N_{H_0}(P) < N(B)$, so our hypothesis forces $N_{H_0}(P) = C_{H_0}(P)$. In particular, H_0 has a normal 3-
complement F. If F is not solvable, then F has a chief section which is the direct product of one or more Suzuki groups. Therefore $C_F(A) = C_F(P)$ involves $S_2(2)$. But $C(P)$ contains no elements of order 4 by hypothesis, so F is solvable and hence H is solvable. As $F = O_3(\bar{H})$, it follows from Lemma 2.2 that $\bar{x} \in \bar{N}(\bar{P})$ for every $x \in \mathcal{G}(D)$. This in turn yields $\mathcal{G}(D) \subseteq \mathcal{G}(P)^G$ as claimed.

Let $r \in \mathcal{G}(A) \cap K$ and $s \in \mathcal{G}(B) \cap C(A)$ with $[r, s] = 1$. If $C(P)$ has even order, let $t \in \text{Inv}(C(P))$, otherwise, set $t = 1$. Then $\langle t \rangle \in \text{Syl}_2(C(P))$ by hypothesis (ii) and we may choose t so that $\langle t, r, s \rangle$ is abelian. Observe that $K\langle s, t \rangle \cong \Sigma_5 \times \mathbb{Z}_2$ or $\Sigma_5 \times \mathbb{Z}_2$ and $K\langle s, t \rangle$ covers $N(B)/O_3(C(B))B$. By inspection, $B \in \text{Syl}_3(C(B) \cap C(r))$, hence $B \in \text{Syl}_3(C(r))$. Similarly $A \in \text{Syl}_3(C(s))$ and $P \in \text{Syl}_3(C(t))$. Since $A \neq B$, we see that r, s and t belong to different G-conjugacy classes. In particular $\mathcal{G}(D)^G = \mathcal{G}(P)^G = (rs)^G \cup \langle r, s \rangle^G \neq \text{Inv}(G)$.

As $K\langle s, t \rangle$ contains a Sylow 2-subgroup of $N(B)$, every involution of $K\langle s, t \rangle$ is K-conjugate to an element of $N(P)$. Therefore $g \in N(B) = N(P)$ for every $g \in \mathcal{G}(A)$. Similarly $x \in N(B) = N(P)$ for every $x \in \mathcal{G}(A)$. It follows that $\mathcal{G}(A)^G = r^G \cup (rt)^G \cup (rs)^G \cup (rst)^G$ and $\mathcal{G}(B)^G = s^G \cup (st)^G \cup (rs)^G \cup (rst)^G$.

If $|C(P)|$ is even, then $K\langle t \rangle \cong \Sigma_5$ by hypothesis (i), so $t = r st$. It follows that $\mathcal{G}(A)^G \cap \mathcal{G}(B)^G = \mathcal{G}(D)^G$ in any case. Let $x \in \text{Inv}(G) \setminus \mathcal{G}(D)^G$. Then x belongs to at most one of $\mathcal{G}(A)^G$, $\mathcal{G}(B)^G$, $\mathcal{G}(D)^G$ contradicting Higman's result. Therefore our counterexample G does not exist.

3. Proof of Theorem A. In this section, G, b and J satisfy the hypotheses of Theorem A. That is, G is a finite group with $F^*(G)$ simple and $b \in G$ is an element of order 3 such that the following hold:

(a) J is a normal subgroup of $C(b)$ of type $L_4(2)$, $L_4(2)$, or $L_5(2)$;
(b) $C(J)$ has cyclic Sylow 3-subgroups;
(c) $\langle b \rangle$ is not strongly closed in $C(b)$;
(d) $m_{23}(G) = 3$; and
(e) $b \notin G J$.

Choose $B \in \text{Syl}_3(C(b))$ and set $B_0 = B \cap J$. Then $B_0 \triangleleft N(B)$ by Lemma 1.3. We set $N = N(B)$ and $\bar{N} = N/O_3(N) \cdot B_0$.

Lemma 3.1. $\bar{N} = \langle \bar{b} \rangle \times \bar{A} \bar{D}$ or $\langle \bar{b}, \bar{t} \rangle \times \bar{A} \bar{D}$ where $\langle b, A \rangle = P \in \text{Syl}_3(N)$, A is homocyclic abelian of order 34, $D \in \text{Syl}_2(N \cap J)$ is dihedral of order 8, A is isomorphic to B_0 as a $GF(3)\bar{D}$-module and t, if it exists, is an involution which inverts B.

Proof. By Lemma 1.3, $\langle b \rangle \triangleleft \bar{N}$ and $C_{\bar{N}}(\bar{b})/\langle \bar{b} \rangle \cong N/C^*(B) \cong \Sigma_3 \ltimes \mathbb{Z}_2$. Let $P \in \text{Syl}_3(N)$ so that $\bar{P} = O_3(\bar{N})$. The action of D on P implies that P is
either elementary abelian or extra-special of exponent 3. In the latter case,
\(\text{Aut}_{C(b)}(\bar{P}) \) is isomorphic to a subgroup of \(SL_2(3) \) whereas \(\bar{D} \) acts faithfully on
\(\bar{P} \). Therefore \(\bar{P} \cong E_3 \) and we may set \(\bar{P} = \langle \bar{b} \rangle \times \bar{A} \) where \(\bar{A} = [\bar{P}, Z(\bar{D})] \).

Clearly \(\bar{D} \) acts faithfully on \(\bar{A} \). Since \([b, P] = B_0 \), \(A \) and \(B_0 \) are isomorphic as
\(GF(3)\bar{D} \)-modules. Also \(Z(\bar{D}) \) acts regularly on \(\bar{A} \) and \(B_0 \) then yields that \(A \) is
homocyclic of order \(3^4 \). Finally if \(b \) is inverted in \(G \), hence necessarily in \(N \),
then \(t \) may be chosen as described.

Lemma 3.2. Either \(G \) satisfies the conclusion of Theorem A or the following
conditions hold:

(a) \(A \cong E_3 \);
(b) \(C(B) \) has odd order, in particular \(|O_3(C(b))| \) is odd;
(c) \(J = O^2(C(b)) \); and
(d) \(P \) has exponent 3.

Proof. By Lemma 3.1, \(A \) is homocyclic abelian of order \(3^4 \). Assume first
that \(A \cong Z_3 \times Z_3 \). Since \(A \) and \(F_0 \) are isomorphic as \(GF(3)\bar{D} \)-modules, an
 easy argument yields \(B = \Omega_3(P) \). Therefore \(B \) is weakly closed in \(P \) with
respect to \(G \) and consequently \(P \in Syl_3(G) \). Suppose \(b = \bar{g}b^{-1} \) so that
\(\bar{N} = \langle \bar{b}, i \rangle \times AD \) as in Lemma 3.1. Then, assuming that \(t \in N(A) \), as we
may, \(t \) centralizes \(A/B_0 \) and inverts \(B_0 \), an obvious contradiction. Hence
\(b \notin N' \). But \(N(P) < N \), and \(P \) has no \(Z_3 \triangleleft Z_3 \) homomorphic image. A recent
transfer theorem of Yoshida [16] implies that \(A = P \cap N(P)' \). Thus \(A \in Syl_3(P^*(G)) \) because \(A = [A, D] \), and \(G \) satisfies the conclusion of Theorem A.

Now assume that \(A \) is elementary abelian of rank 4. By Burnside's transfer
theorem, \(C(B) \) has a normal 3-complement \(X \). Clearly \(A \triangleleft N(X) \). Since
\(m_{2,3}(G) = 3 \), we have \(|X|_2 = |C(B)|_2 = 1 \), so (b) holds. By Lemma 1.4, this
implies that \(J = O^2(C(b)) \). Finally, \(P \) has exponent 3 since \(P = \Omega_3(P) \) and \(P \)
has class 2. This completes the proof of Lemma 3.2.

Now assume until a contradiction is reached that \(G \) does not satisfy the
conclusion of Theorem A. Therefore conditions (a), (b), (c) and (d) of Lemma
3.2 hold.

Lemma 3.3. Choose \(A^* \in Syl_3(C(A)) \) so that \(b \in N(A^*) \). Then \(A^* \) is abelian
and \(A^* \langle b \rangle \in Syl_3(G) \).

Proof. Set \(N_1 = N(A) \). By Lemma 3.1, we may assume that \(C_{N_1}(b) =
O_3(C_{N_1}(b)) \langle b \rangle \times B_0 \). Set \(Y = C_{N_1}(Z(D)) \). Then the regular action of
\(Z(D) \) on \(B_0 \) implies that \(\langle b \rangle \) is a Sylow 3-subgroup of \(Y \). As \(m_{2,3}(G) = 3 \),
\(C(A) \) has odd order, and \(Z(D) \) must act regularly on some Sylow 3-subgroup
of \(C(A) \). Therefore \(A^* \) is abelian. As \(Z(D) \) inverts \(A \), \(C(A)Z(D) \triangleleft N_1 \);
hence, by the Frattini argument, we have that $N_1 = C(A)Y$. Thus $A^* \langle b \rangle \in \text{Syl}_3(N_1)$. Now $Z(D)$ normalizes $\langle C(A), b \rangle$, so $Z(D)$ normalizes a Sylow 3-subgroup of $\langle C(A), b \rangle$ containing $\langle b \rangle$. Without loss, we may then assume that $Z(D)$ normalizes $\langle A^*, b \rangle$. If $Y^* = C_{N(A^*)}(Z(D))$, then we may argue as before to conclude that $N(A^*) = C(A^*)Y^*$ where $\langle b \rangle \in \text{Syl}_3(Y^*)$. But $C(A^*) < C(A)$ yields $A^* \langle b \rangle \in \text{Syl}_3(N(A^*))$ and as A^* is characteristic in $A^* \langle b \rangle$, we conclude that $A^* \langle b \rangle \in \text{Syl}_3(G)$.

Lemma 3.4. Choose $a \in B_0$ so that $K = E(C_2(a)) \cong L_2(4)$. Then $C_A(K) \cap N(\langle a, b \rangle) = U \cong E_9$, $b \in N(U)$ and $O_{3,E}(C(U))/O_{3}(C(U)) \cong L_3(4)$.

Proof. Set $V = N_A(\langle a, b \rangle)$. Then $V \cong E_3$ as $[A, b] = B_0$ and $A \cong E_3$. V normalizes $K = E(C(\langle a, b \rangle))$, so $U = C_F(K) \cong E_9$. Clearly $[b, U] < [b, V] = \langle a \rangle$, so $b \in N(U) \setminus C(U)$.

Set $M = N(U)$, $C = C(U)$ and $\bar{M} = M/O_{3}(C)$. For the proof of this lemma, we are interested only in the structure of \bar{M}; therefore we shall abuse notation and identify elements and subgroups of M with their images in \bar{M}. If $R = O_{3}(C)$, then $C_R(b) = \langle a \rangle$. Since $[a, K] = 1$, the $P \times Q$ lemma applied to $\langle b \rangle \times K$ acting on R shows that $[R, K] = 1$. This implies that $E = E(C) \neq 1$. By Lemma 3.3, $A^* \in \text{Syl}_3(C)$; so $O_{3}(E) = 1$, and the components of E are all simple. As $m(R) > 2$ and $m_{3}(G) = 3$, E has at most 2 components, each of which must be normalized by b. Since $m_{3}(C_{E}(b)) = 1$, E is simple, and $C_{E}(b) = O_{3}(C_{E}(b)) \times K$.

We argue that $E \langle b \rangle$ satisfies the hypotheses of Proposition 2.1. Since $U \triangleleft C(E)$, $m_{3}(E) = 1$. Furthermore, if $\langle a^* \rangle \in \text{Syl}_3(K)$, then $\langle a^* \rangle \in \text{Syl}_3(C_{E}(b))$. As $N_{A}(\langle b, a^* \rangle)$ acts transitively on $\delta_{1}(\langle b, a^* \rangle)\setminus \langle a^* \rangle$, $C_{E}(b)$ is a 3-group, so C^* is 3-constrained. In particular, if R^* is a $\langle b \rangle$-invariant Sylow 3-subgroup of C^*, then R^* is abelian, and $O_{3,3}(C^*) = O_{3}(C)R^*$. Since $C_{R}(b) = \langle a^* \rangle$, $m(R^*) < 3$. Since $C^*/O_{3}(C)R^*$ acts faithfully on $\Omega_{1}(R^*)$ and fixes $\langle a^* \rangle$, it follows that C^* is 3-nilpotent. This implies that $|C^*|$ is odd and hence $E \langle b \rangle$ satisfies the hypotheses of Proposition 2.1.

We conclude that $E \cong L_{2}(125)$, $L_{2}(64)$ or $L_{3}(4)$. If $E \cong L_{2}(125)$ or $L_{2}(64)$, let $a^* \in S \in \text{Syl}_3(E)$ where S is $\langle b \rangle$-invariant. Then S is cyclic of order 9 and $[S, b] = \langle a^* \rangle$. But this implies that $S \triangleleft N(B)$ contradicting Lemma 3.2. Hence $E \cong L_{3}(4)$ as required.

Lemma 3.5. A contains E_9 subgroups U_1 and U_2 satisfying

(i) $b \in N(U_1) \cap N(U_2)$;

(ii) If $L_i = O_{3,E}(C(U_i))$, then $L_i/O_{3}(L_i) \cong L_{3}(4)$ and $U_i \triangleleft L_{3-i}$ for $i = 1, 2$; and

(iii) $C_{L_i}(b) = O_{3}(C_{L_i}(b)) \times K_i$ where $O^{2}(C_{L_i}(b)) = K_i \cong A_5$, $i = 1, 2$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. Choose a and U as in Lemma 3.4 and set $U_1 = U$ and $L_1 = O_{3,1}(C(U_1))$. Let $U_2 = A \cap L_1$ so that $U_2 \in \text{Syl}_3(L_1)$ and $A = U_1 \times U_2$. By properties of $L_3(4)$, U_2 is inverted by $\sigma \in \text{Inv}(C(<U_1, b>))$. Recall from Lemmas 3.1 and 3.2 that a Sylow 2-subgroup D of $C(b) \cap N(A)$ is dihedral of order 8 and $Z(D) = <\tau>$ inverts A. Assume that $\sigma \in D$, as we may. Then for some $d \in \text{Inv}(D)$, $\sigma^d = \tau z$. As $U_2 = [A, \sigma]$ and z inverts A, $U_2 = [A, \sigma^d] = [A, \tau z] < U_1$; hence, $U_2 = U_1$. Since $N(U_1)$ satisfies (iii) and d interchanges U_1 and U_2 under conjugation, the result follows.

We are now in position to obtain our final contradiction. Let $L_i^* = <\langle L_i, b \rangle$ and set $L_i^* = L_i^* / O_{3}(L_i)$. Then $N_{L_i^*}(U_i) = \overline{U_i} \overline{Q_i} < b, i \neq j$, where $\overline{Q_i} \simeq Q_i$. As $C_{L_i^*}(b) = K_i \simeq A_4$ and all involutions of L_i are conjugate, we may assume that b normalizes $\overline{Q_i}$. Now $O_{3}(L_i)$ is a $\{2, 3\}$-group, so we may assume that $N_{L_i^*}(U_i)$ contains a Q_8-subgroup Q_i and that b normalizes $Q_1, 1 < i \neq j < 2$.

Let $M_i = L_i^* Q_i < b>$ and set $M_j = M_i / O_{3}(L_i) = L_i \overline{Q_i} < b>$. Since $\overline{Q_i}$ normalizes $\overline{L_i}$ and $[Q_i, U_j] = 1$, $i \neq j$, it follows from $|C_{\Aut(\overline{L_i})}(U_i)| = 2 \cdot 3^2$ that $[\overline{Q_i} : C_{\overline{Q_i}}(L_i)] < 2$. But b acts regularly on $\overline{Q_i} / Z(\overline{Q_i})$ then yields $\overline{Q_i} \overline{L_i} = \overline{Q_i} \times L_i$. Therefore $C_{\overline{Q_i}}(b) = Z(\overline{Q_i}) \times K_i \simeq Z_2 \times L_2(4)$ and this in turn implies that $O_{3}^{2}(C(b))$ contains a subgroup isomorphic to $Z_2 \times L_2(4)$. But by Lemma 3.2, $O_{3}^{2}(C(b)) = J \simeq L_2(2)$ or $L_3(2)$ and no involution of J centralizes an $L_3(2)$-subgroup. With this contradiction, the proof of Theorem A is complete.

4. Proof of Theorem B. In this section, G, b, J satisfy the hypotheses of Theorem B. Thus G is a finite simple group of characteristic 2 type such that:

(a) $b \in G$ has order 3;
(b) J is a normal subgroup of $C(b)$ of type $L_3(2)$;
(c) $\langle b \rangle$ is not strongly closed in $C(b)$; and
(d) $C(J)$ has cyclic Sylow 3-subgroups.

By Theorem A, we may assume that $b \in G$. As before, we choose $B \in \text{Syl}_3(C(b))$ and set $B_0 = B \cap J$. By Lemma 1.3, $B_0 = \langle b_1, b_2 \rangle$ where $\langle b \rangle N(B) = \{\langle b \rangle, \langle b_1 \rangle, \langle b_2 \rangle \}$. We shall show that $G \cong L_7(2)$ by constructing the centralizer of a central involution. In order to do this, we show in Lemma 4.2 that the 3-fusion pattern in G is the same as that in $L_7(2)$. First, we show that $O_{3}(C(b))$ has odd order.

Lemma 4.1. $O_{3}(C(b))$ has odd order.

Proof. Set $X = O_{3}(C(b))$ and let $V \in \text{Syl}_2(X)$. Since G has characteristic 2 type, it suffices to show that $\langle b \rangle$ centralizes $V^* = O_2(N(V))$.

By Lemma 1.2, $X = O_{3}(C(<b, b^*>) for every $b^* \in J$ of order 3. Since $b^{N(B)} = (b)^* \cup (b^{N(B)} \cap J)$, it follows that $X = O_{3}(C(b^*))$ for all $b^* \in b^{N(B)}$. Therefore $X = N(B)$, so that $N(B) = X \cdot N_{N}(b)(V)$ by the Frattini argument. This implies that $b = N_{N}(b)$, so $C_{V^*}(b) = V = C_{V^*}(b_1)$. Since
A 3-LOCAL CHARACTERIZATION OF \(L_7(2) \)

191

We have that \(V^* = V \) by Lemma 1.6. Thus \(\langle b \rangle \) centralizes \(V^* \), as required.

Now set \(\beta = b_1 b_2 \) and \(\gamma = b_1^2 b_2 \), so that \(B_0 = \langle \beta, \gamma \rangle \). Also set \(H^* = C(\beta) \) and \(H = O^3(H^*) \). We use Proposition 2.3 to determine the structure of \(H \).

LEMMA 4.2. \(H^* = \langle \beta \rangle \times H \) and \(H \) has the following properties:

(i) \(\langle b, \gamma \rangle \in \text{Syl}_3(H) \).

(ii) If \(K = E(C_H(b)) \) and \(L = E(C_H(\gamma)) \), then \(K \cong L_2(4) \), \(L \cong L_3(2) \), \(b \in L \) and \(\gamma \in K \).

(iii) \(H = C(B)E(H) \) where \(E(H) = K \times L \) and \(C(B) \) is 2-nilpotent with \(O_3(C(B)) = O_3(H) = O_3(C(b)) \).

PROOF. We first argue that \(H \) satisfies the hypotheses of Proposition 2.3. By Lemma 1.3, \(B \in \text{Syl}_3(N_{H^*}(B)) \) and \(\langle b, \gamma \rangle = B \cap N_{H^*}(B)' \), so Grün’s theorem implies that \(\langle b, \gamma \rangle \in \text{Syl}_3(H) \). Now \(B_0 = \langle b, b_1 \rangle \). Thus \(L = E(C_H(\gamma)) \cong E(C(\langle b, b_1 \rangle)) \) and \(b \in L \). Furthermore \(K = E(C_H(b)) = E(C(\langle b, \beta \rangle)) \) and \(\gamma \in K \). Also, by Lemma 1.4, \(O_3(C_H(\gamma)) = O_3(C(b)) = O_3(C_H(b)) \) has odd order. Since either \(K \cong L_2(4) \), \(L \cong L_3(2) \) or \(K \cong L_3(2) \), \(L \cong L_2(4) \), it follows from Proposition 2.3, that \(H = N_{H^*}(K)O_3(H) \) or \(N_{H^*}(L)O_3(H) \) according to whether \(K \cong L_2(4) \) or \(L \cong L_3(2) \), respectively.

Assume first that \(K \cong L_2(4) \). Set \(H_0 = O_3(H) \). Then \(C_{H_0}(b) < O_3(C(b)) \) implies that \(C_{H_0}(b) = C_{H_0}(L) \). As \(L \cong L_3(2) \), we have \([L, H_0] = 1 \) whereupon \(H_0 < O_3(C(b)) \). But then \([K, H_0] = 1 \), and \(K \vartriangleleft H \). An easy argument shows that \(H_0 = O_3(C(b)) \) and \(E(H) = K \times L \). By the Frattini argument, \(H = C(B)E(H) \) proving (iii). On the other hand, if \(K \cong L_3(2) \), then \(C_{H_0}(\gamma) < O_3(C(B_0)) = O_3(C(b)) \); hence, \(C_{H_0}(K) = C_{H_0}(\gamma) \). Therefore \([K, H_0] = 1 \) and \(H_0 < O_3(C(B_0)) \). This in turn yields \([L, H_0] = 1 \), whereupon \(L \vartriangleleft H \). As before, \(H_0 = O_3(C(b)) \), \(E(H) = K \times L \) and \(H = C(B)E(H) \). Thus (iii) is true in either case.

In order to complete the proof of (ii), assume that \(K \cong L_3(2) \) and \(L \cong L_2(4) \) for purpose of a contradiction. Let \(U \) be a \(B \)-invariant fours subgroup of \(L \) and set \(V = O_2(N(U)) \). Then \([B, U] = U \) gives \(U \vartriangleleft Z(V) \). Now \(C_V(\beta) = V \cap H < O_2(C_H(U)) \), so \([K, C_V(\beta)] \vartriangleleft K \cap O_2(C_H(U)) = 1 \). But \(C_H(K) < C(B_0) \), and \(C(B_0) \) has dihedral Sylow 2-subgroups. It follows that \(U = C_V(\beta) \). As \(\beta = N_{B_0}(\gamma) \) and \(L = E(C(B_0)) \), an application of the Frattini argument yields \(\beta = N_{B_0}(\gamma) \). Hence \(U = C_V(\gamma) = C_V(K) \) whereupon \([K, V] = 1 \). This contradicts \(V = F^*(N(U)) \).

LEMMA 4.3. \(C(\beta) = \langle \beta \rangle \times O_3(C(\beta)) \times K \times L \) and \(C(b) = \langle b \rangle \times O_3(C(b)) \times J \).

PROOF. By Lemma 4.2(iii) and Lemma 1.4, it suffices to show that \(C(B) \) has odd order. Assume not and let \(\tau \in \text{Inv}(C(B)) \). Then \(J\langle \tau \rangle \cong \text{Aut}(L_3(2)) \),
so \(O_2(C(⟨b, τ⟩)) = 〈τ⟩ \) by Lemma 1.2(b). Since \(b = _N(B) b_i \), \(i = 1, 2 \), and \(〈τ⟩ \in \text{Syl}_2(C(B)) \), we have \(O_2(C(⟨b, τ⟩)) = 〈τ⟩ \) for \(i = 1, 2 \). By Lemma 1.2(e), (f), \(O_2(C_κ(τ)) = O_2(C_κ(τ)) = 1 \), so \(O_2(C_κ(τ)) = 1 \). As \(KL⟨τ⟩ \) contains a Sylow 2-subgroup of \(C(β) \) and \(β = _N(B) γ \), we have \(O_2(C(⟨β, τ⟩)) = O_2(C(⟨γ, τ⟩)) = 〈τ⟩ \). It follows from the action of \(B_9 \) on \(O_2(C(τ)) \) that \(O_2(C(τ)) = 〈τ⟩ \), a contradiction since \(C(τ) \) is 2-constrained.

For the remainder of the section, let \(t \) be an involution in \(C(B_0) \) which inverts \(b \). Set \(C = C(t) \) and \(T = O_2(C) \). We shall show that \(C \) is isomorphic to the centralizer of an involution in \(L_7(2) \).

Lemma 4.4. \(J < C, T = C_T(b_1) \cdot C_T(b_2) \) and \(T \) is extra-special of type \(2_+^{11} \). Furthermore \(C_T(b_i) = O_2(C(t) \cap E(C(b_i))) \).

Proof. By Lemmas 4.2 and 4.3, \(C(⟨b_1, τ⟩) \) contains a subgroup isomorphic to \(L_3(2) \) which is centralized by \(b \). Therefore \(t \) centralizes \(J \) by Lemma 1.2(b), whence \(J \subset C \).

Observe that \(T = 〈C_T(x) : x \in B_0^2⟩ < 〈O_2(C(⟨x, τ⟩)) : x \in B_0^2⟩ \). Setting \(D = O_2(C(⟨β, τ⟩)) \), it follows from Lemma 4.3 that \(D < C(B_0) \) and that \(D \) is dihedral of order 8. This implies that \(C_T(β) = C_T(B_0) = D \cap T \). Since \(β = _T γ \), we have that \(T = C_T(b_1) \cdot C_T(b_2) \).

We now show that \(T \) is extra-special. Set \(T_i = C_T(b_i) \) and \(R_i = O_2(C(⟨b_i, τ⟩)) \) so that \(T_i = T \cap R_i \), \(i = 1, 2 \). By Lemma 1.2(g), \(C \cap E(C(b_i)) = R_i L_i \) where \(L_i \cong L_3(2) \), \(b_i \in L_{i-1} \), \(R_i \) is extra-special of type \(2_+ \) and \(D \leq R_1 \cap R_2 \). Setting \(\overline{C} = C/⟨t⟩ \) and observing that \(\overline{T} = F^*(\overline{C}) \), we have \(\overline{R} \) is abelian, hence \(D \leq C_{\overline{C}}(\overline{T}) = Z(\overline{C}) \). Since \(D = C_T(β) \), Lemma 1.6 implies that \(\overline{T} \) is elementary abelian. As \(C(β) \cap Z(T) = ⟨t⟩ \), we have \(Z(T) = ⟨t⟩ \) by the same lemma. Thus \(T \) is extra-special.

By Lemma 4.3, \(K \) centralizes \(D \), so \(γ \) acts regularly on the \(K \)-invariant section \(T/D \). Therefore \(|T/D| = 2^r \) for some \(r > 1 \). But \(|T| = |T_1T_2| = |T_1||T_2|/|D| < |R_1||R_2|/|D| = 2^{11} \) gives \(r < 2 \). On the other hand, \(J \) acts faithfully on \(T \) forcing \(r > 1 \). We conclude that \(r = 2 \) whereupon \(|T| = 2^{11} \) and \(T_i = R_i, i = 1, 2 \).

Since \(T_1 \) is extra-special, \(T = T_1 \cdot C_T(T_1) \). As \(C_T(T_1) \cap C(b_i) = C_T(T_1) \cap T_1 = 〈t⟩ \), we have \(C_T(T_1) < T_2 \). But \(C_T(T_1) = [C_T(T_1), b_i] < [T_2, b_i] \) which is extra-special of type \(2_+^5 \) so that \(T = T_1 \cdot [T_2, b_i] \) is extra-special of type \(2_+^{11} \). This completes the proof.

Lemma 4.5. \(TJ \) is isomorphic to the centralizer of a central involution of \(L_7(2) \).

Proof. Recall from Lemma 4.4, that \(C \cap E(C(b_i)) = T_i L_i \) where \(T_i = C_T(b_i) \) is extra-special of type \(2_+^7 \), \(L_i \cong L_3(2) \) and \(b_j \in L_i, 1 < i \neq j < 2 \). If we set \(S_i = [T_{3-i}, b_i] \), then \(T = T_1 \cdot S_1, S_1 = [T, b_1] \) and \(S_i \) is extra-special of
A 3-LOCAL CHARACTERIZATION OF $L_7(2)$

193

As S_i does not admit the faithful action of L_i, we have $[S_i, L_i] = 1$, $i = 1, 2$. By Lemma 1.1(b), T_i contains precisely 2 L_i-invariant E_{16}-subgroups, say U_i and V_i, with $U_i \cap V_i = \langle t \rangle$. Recall from the proof of Lemma 4.4 that $D = C_T(B_0)$ is dihedral of order 8 and $D = T_1 \cap T_2$. It is easy to check that $D \cap U_i = C_{U_i}(b_{3-i})$ has order 4. Relabelling U_2 and V_2, if necessary, we may assume that $D \cap U_1 = D \cap U_2$. Set $U = U_1U_2$ and $W_i = \{U_i, b_{3-i} \}$. Then $U_i = W_i \times (D \cap U_i)$ implies that U has order 2^6 and that $U = U_1W_2 = U_2W_1$. Since $W_{3-i} < S_i$, $L_4 < C(W_{3-i}) \cap N(U_i) < N(U)$. Therefore $J = \langle L_1, L_2 \rangle < N(U)$. As $|U| = 2^6$, it follows immediately that U is elementary abelian. Similarly $V = V_1V_2$ is a J-invariant E_{26}-subgroup of T. Furthermore J acts trivially on $U \cap V$, then gives $T = UV$ and $\langle t \rangle \cap U \cap V = \langle t \rangle$.

By Lemma 1.5, $U = \langle t \rangle \times U_0$ where U_0 is J-invariant. Clearly $U_0 \cap C_T(V) = U_0 \cap V = 1$, so U_0J acts faithfully on V. Since $L_3(2)$ contains a subgroup isomorphic to the split extension of V by Aut(V), we may embed $VU_0J = TJ$ in $L_3(2)$. But then consideration of orders verifies that TJ is isomorphic to the centralizer of a central involution of $L_3(2)$.

PROPOSITION 4.6. $C(t) = TJ$.

Proof. As in the proof of the previous lemma, let U and V be the J-invariant E_{26}-subgroups of T. Then $N_C(U) = C_C(U)TJ$ because Aut$_C(U) = \text{Aut}_T(J(U))$. Furthermore, the $P \times Q$ lemma applied to $O^2(C_C(U)) \times U$ acting on T gives $O^2(C_C(U)) < T$ since $C_T(U) = U$. Therefore $C_C(U)$ is a 2-group and $O_2(N_C(U)) = C_C(U)T$. We shall argue that $N_C(U) = TJ$ and that $N_C(U) < C$.

We claim that $t^G \cap T = U^* \cup V^*$. First, we show that $U^* \cup V^* \subseteq t^G \cap T$. In fact, TJ has 2 orbits on U^*, namely $\{t\}$ and $U \setminus \langle t \rangle$. Since $D \cap U$ is a fours group and Inv(D) $\subseteq t^G$ (recall that $D < E(C(B_0)) \approx L_3(2)$ by Lemma 4.3), we have $U^* \subseteq t^G$. Similarly $V^* \subseteq t^G$. As $C_T(b_i) = T_1 = O_2(C \cap E(C(b_i)))$ by Lemma 4.4, it follows from Lemma 1.1(e) that T contains an involution x with $x \in_C C(\langle b_i, bb_2 \rangle)$. Certainly $x \neq t$ because $\langle b_1, bb_2 \rangle \neq B_0 \in \text{Syl}_3(C)$. But an easy argument shows that TJ acts transitively on Inv(T) $\setminus (U^* \cup V^*)$. Hence $t^G \cap T = U^* \cup V^*$ as claimed.

If $W = U^* < T$, then U and V are the unique E_{26}-subgroups of T generated by conjugates of t implies that $W = U$ or $W = V$. Therefore $[C : N_C(U)] < 2$ and $N_C(U) < C$. Thus $T = O_2(N_C(U))$, $U = C_C(U)$ and $N_C(U) = TJ$.

We have $C = TJ \cdot N_C(B_0)$ by the Frattini argument. Also, by Lemmas 4.3 and 4.4, $C_C(B_0)$ is 2-closed and $O_2(C_C(B_0)) < T$. As $|\text{Aut}_C(B_0)| < |\text{Aut}_G(B_0)| = 8$ by Lemma 1.4 and $|\text{Aut}_T(B_0)| = 8$ by Lemma 1.2(c), TJ contains a Sylow
2-subgroup of $N_C(B_0)$. Therefore $C = TJ$, as required.

By Suzuki's theorem [14], we conclude from Proposition 4.6 that $G \cong L_3(2)$. This completes the proof of Theorem B.

REFERENCES

3. L. Finkelstein and D. Frohardt, Groups with a standard 3-component of type $A_n(2)$, $n > 5$ (to appear).
10. _____, Odd characterizations of finite simple groups, Mimeographed notes, University of Michigan, 1968.

Department of Mathematics, Wayne State University, Detroit, Michigan 48202