STARLIKE, CONVEX, CLOSE-TO-CONVEX, SPIRALLIKE, AND Φ-LIKE MAPS IN A COMMUTATIVE BANACH ALGEBRA WITH IDENTITY

BY
L. F. HEATH AND T. J. SUFFRIDGE

Abstract. Let $C(X)$ be the space of continuous functions on a compact T_2-space X where each point of X is a G_6. If $F: B \rightarrow C(X)$ is a biholomorphic (in the sense that F and F^{-1} are Fréchet differentiable) map of $B = \{ f \ | \ ||f|| < 1 \}$ onto a convex domain with $DF(0) = I$, then F is Lorch analytic (i.e., $DF(f)(g) = ag$ for some $a \in C(X)$).

Let R be a commutative Banach algebra with identity such that the Gelfand homomorphism of R into $C(\mathfrak{M})$ is an isometry. Starlike, convex, close-to-convex, spirallike and Φ-like functions are defined in $B = \{ x \in R \ | \ ||x|| < 1 \}$ for L-analytic functions in B and they are related to associated complex-valued holomorphic functions in $\Delta = \{ z \in \mathbb{C} \ | \ |z| < 1 \}$.

Introduction. In §§2–7, let R be a commutative Banach algebra over the complex numbers with identity (denoted by 1) and let \mathfrak{M} be the space of maximal ideals in R. Then \mathfrak{M} is a compact, T_2-space where the topology is the weakest topology on \mathfrak{M} such that the Gelfand transformation $x(M)$ of x is a continuous function on \mathfrak{M}. Assume further that the Gelfand homomorphism of R into $C(\mathfrak{M})$ is an isometry; i.e., $\|x\| = \sup\{|x(M)| \ | M \in \mathfrak{M} \}$ for all $x \in R$. Let $B = \{ x \in R \ | \ ||x|| < 1 \}$ and $\Delta = \{ z \in \mathbb{C} \ | \ |z| < 1 \}$.

If D is an open set in R, we say $F: D \rightarrow R$ is L-analytic in D if for each $x \in D$, there is $F'(x) \in R$ such that

$$\lim_{h \rightarrow 0} \frac{\|F(x + h) - F(x) - hF'(x)\|}{\|h\|} = 0$$

[11]. Thus it is clear that L-analytic functions are Fréchet differentiable. If $F: B \rightarrow R$ is L-analytic in B, then for each $x \in B$, $F(x) = \sum_{n=0}^{\infty} a_n x^n$ where $a_n \in R$ and the series converges uniformly on $||x|| < \rho < 1$ [7, Theorems 3.19.1 and 26.4.1]. If $F: D \rightarrow R$ is L-analytic in D and for each $y \in F(B)$, there is an open neighborhood V of y such that F^{-1} exists and is L-analytic.

Presented to the Society, January 4, 1978 under the title Convex Fréchet differentiable map of the unit ball of $C(X)$ into $C(X)$; received by the editors June 8, 1977.

Key words and phrases. Starlike, convex, close-to-convex, spirallike, Φ-like, F-holomorphic, L-analytic.

The research of the second author was supported in part by the National Science Foundation under grant number MCS 75-06971 A01.

© 1979 American Mathematical Society
0002-9947/79/0000-0257/$05.50
195
in V, then we say that F is locally bianalytic in B. If F is univalent (one-to-one) and locally bianalytic in B, we say that F is bianalytic in B. If F is L-analytic in B, then for each $M \in \mathcal{M}$, there is an associated holomorphic function $F_M: \Delta \to \mathbb{C}$ defined by $F_M(z) \equiv F(z)(M)$ for all $z \in \Delta$. If $F(x) = \sum_{n=1}^{\infty} a_n x^n$ is L-analytic in B, then we write $F(x)/x$ for the L-analytic function $\sum_{n=1}^{\infty} a_n x^{n-1}$.

2. Preliminary lemmas.

Lemma 2.1. Let $V: B \times I \to B$ be L-analytic in B for each $t \in I = [0, 1]$, $V(0, t) = 0$ for all $t \in I$, $V(x, 0) = x$ for all $x \in B$. If $\lim_{t \to 0+} (x - V(x, t))/(xt) = U(x)$ exists and is L-analytic in B, then $\Re U(x)(M) > 0$ for all $M \in \mathcal{M}$ and all $x \in B$.

Proof. For each $t \in I$, $V(x, t)$ satisfies Schwarz’ Lemma [17, Theorem A] so $\|V(x, t)\| < \|x\|$ for all $x \in B$. For all $M \in \mathcal{M}$ and all $x \in B$,

$$|V_M(x(M), t)| = |V(x, t)(M)| < \|V(x, t)\| < \|x\|.$$

For $z \in \Delta$, the choice $x = z1$ shows that $V_M(\cdot, t)$ satisfies Schwarz’ lemma. Now letting $z = x(M)$, we have $|V(x, t)/x(M)| = |V_M(x(M), t)/x(M)| < 1$ (where the limit value is to be taken when $x(M) = 0$) and taking the maximum over all $M \in \mathcal{M}$, we have $\|V(x, t)/x\| < 1$. Hence,

$$\Re \frac{x - V(x, t)}{xt}(M) > \frac{1 - \|V(x, t)/x\|}{t} > 0$$

for all $t \in I$. The lemma follows.

Definition 2.2. Let F be a domain in \mathcal{M}. If $U: D \to F$ is L-analytic in D and $\Re U(x)(M) > 0$ for each $M \in \mathcal{M}$ and each $x \in D$, then we say U has positive real part in D.

Example 1. Let $X = \{1, 2, \ldots, n\}$ with the discrete topology. Then $C(X) = \mathbb{C}^n$ with the multiplication $(a_1, a_2, \ldots, a_n) \cdot (b_1, b_2, \ldots, b_n) = (a_1 b_1, a_2 b_2, \ldots, a_n b_n)$ and the unit ball B is the polydisk $\{(z_1, z_2, \ldots, z_n): |z_j| < 1, 1 < j < n\}$. Therefore, L-analytic functions on B are functions $F(z_1, z_2, \ldots, z_n) = (F_1(z_1), F_2(z_2), \ldots, F_n(z_n))$ where each F_j is analytic in the unit disk Δ. There are n maximal ideals M_1, M_2, \ldots, M_n in $C(X)$ given by $M_j = \{(z_1, z_2, \ldots, z_n) \in \mathbb{C}^n: z_j = 0\}$. It follows that $U = (U_1, U_2, \ldots, U_n): B \to \mathbb{C}^n$ has positive real part if and only if $\Re U_j(z_j) > 0$ whenever $|z_j| < 1$ (where it is assumed that U is L-analytic in B). Note that if U has positive real part, then zU is in the class \mathcal{M} defined in [15].

Example 2. Let $X = [0, 1]$ with the usual topology and $R = C(X)$. Then L-analytic functions on B are the power series $F(f) = \sum_{n=0}^{\infty} a_n x^n$ where $a_n \in C(X)$ with $\lim \sup \|a_n\|^{1/n} < 1$. The maximal ideals are the sets $M_x = \{f \in C(X): f(x) = 0\}$ for some x, $0 < x < 1$. Therefore, if U is L-analytic
in B, U has positive real part if and only if $\text{Re } U(f)(x) > 0$ for all $f \in B$ and $x \in [0, 1]$.

Example 3. Let $R = H^\infty(\Delta)$. In this case, one needs to modify Definition 2.2 to replace \mathfrak{N} by $\mathfrak{N}' = \text{cl}(M_\zeta \in \mathfrak{N} : f \in M_\zeta \Rightarrow \Re f(z) = 0, |z| < 1)$. The theory in the remainder of this paper can then be applied to this space. Thus $U : B \to H^\infty(\Delta)$ has positive real part if $\text{Re } U(f)(z) > 0$ for all $f \in H^\infty$ and $z \in \Delta$. For example, $U(f) = (1 + f)(1 - f)^{-1} = 1 + 2f + 2f^2 + \ldots$ has positive real part.

Lemma 2.3. Let $F : B \to R$ be bianalytic in B. Let $G : B \times I \to R$ be L-analytic for each $t \in I$, $G(x, 0) = F(x)$, for each $x \in B$, $G(0, t) = F(0)$ for each $t \in I$, and $G(B, t) \subset F(B)$ for each $t \in I$. If $\lim_{t \to 0^+} (G(x, 0) - G(x, t))/t = xH(x)$ exists and is L-analytic, then $H(x) = F'(x)U(x)$ where U has positive real part in B.

Proof. We will show that $V(x, t) = F^{-1}(G(x, t))$ satisfies Lemma 2.1. Fix $x \in B$, $x \neq 0$, and expand $G(x, t)$ about x,

$$G(x, t) = F(V(x, t)) = F(x) + F'(x)(V(x, t) - x) + K(V(x, t), x)$$

where $\|K(y, x)\|/\|y - x\| \to 0$ as $\|y - x\| \to 0$. Therefore,

$$\frac{G(x, 0) - G(x, t)}{t} = F'(x) \frac{x - V(x, t)}{t} - \frac{K(V(x, t), x)}{t}.$$

If we show $K(V(x, t), x)/t \to 0$ as $t \to 0^+$, then

$$\lim_{t \to 0^+} \frac{x - V(x, t)}{xt} = [F'(x)]^{-1}H(x)$$

and the lemma follows by Lemma 2.2.

To show that $K(V(x, t), x)/t \to 0$ as $t \to 0^+$, observe that $\|(x - V(x, t))/t\|$ is bounded as $t \to 0^+$; otherwise, for some sequence (t_n), $t_n \to 0$ and $\|(x - V(x, t_n))/t_n\| \to \infty$. In this case,

$$xH(x) = \lim_{n \to \infty} \left[F'(x) \frac{x - V(x, t_n)}{\|x - V(x, t_n)\|} - \frac{K(V(x, t_n), x)}{\|x - V(x, t_n)\|} \right] \frac{\|x - V(x, t_n)\|}{t_n}$$

so that

$$F'(x) \frac{x - V(x, t_n)}{\|x - V(x, t_n)\|} \to 0 \quad \text{as } n \to \infty.$$

But this implies that $F'(x)$ is a generalized divisor of zero which contradicts the L-analyticity of F^{-1}. Thus we have shown

$$\lim_{t \to 0^+} \frac{K(V(x, t), x)}{t} = \lim_{t \to 0^+} \frac{K(V(x, t), x)}{\|V(x, t) - x\|} \frac{\|V(x, t) - x\|}{t} = 0.$$
Lemma 2.4. Let U have positive real part.

1. If $M \in \mathcal{M}$, then

$$\frac{1 - \|x\|}{1 + \|x\|} \text{Re} \, U(0)(M) < \text{Re} \, U(x)(M) < \frac{1 + \|x\|}{1 - \|x\|} \text{Re} \, U(0)(M)$$

for all $x \in B$;

and so $\text{Re} \, U(0)(M) > 0$ if and only if $\text{Re} \, U(x)(M) > 0$ for all $x \in B$.

2. $\text{Re} \, U(0)(M) > 0$ for all $M \in \mathcal{M}$ implies $U(x)$ is nonsingular for all $x \in B$.

Proof. For $M \in \mathcal{M}$ and $0 \neq x \in B$, let $p(\lambda) = U(\lambda x/\|x\|)(M)$ for $\lambda \in \Delta$. Since p is holomorphic in Δ and $\text{Re} \, p(\lambda) > 0$, by the classical inequality,

$$\frac{1 - |\lambda|}{1 + |\lambda|} \text{Re} \, p(0) < \text{Re} \, p(\lambda) < \frac{1 + |\lambda|}{1 - |\lambda|} \text{Re} \, p(0)$$

so, $\lambda = \|x\|$ yields (1). (2) follows from (1) and the fact that $\text{Re} \, U(x)(M) > 0$ for all $M \in \mathcal{M}$ implies $U(x) \notin M$ for any $M \in \mathcal{M}$ and, hence, $U(x)$ is nonsingular.

Definition 2.5. If U has positive real part in a domain $D \subset R$ and $\text{Re} \, U(x)(M) > 0$ for all $M \in \mathcal{M}$ and all $x \in D$, then we write $U \in \mathcal{P}(D)$. If $D = B$, then we write \mathcal{P} for $\mathcal{P}(B)$.

Lemma 2.6. Let $P \in \mathcal{P}$. Then, for each $x \in B$, the initial value problem

$$\frac{dw}{dt} = -wP(w), \quad w(0) = x,$$

has a unique solution $V(t) = V(x, t)$ defined on $t > 0$. For fixed $t > 0$, $V(x) = V(x, t)$ is L-analytic and univalent in B and

$$\|V(x, t)\| < \|x\|\exp\left(-\frac{1 - \|x\|}{1 + \|x\|} \delta t \right)$$

for all $t > 0$ and all $x \in B$ where $\delta = \min\{\text{Re} \, P(0)(M)|M \in \mathcal{M}\}$.

Proof. The proof of the existence and uniqueness of the solution is covered in [12]. If (1) holds, then the solution can be continued to obtain a solution for all $t > 0$. The univalence of solution follows from the uniqueness of the solution, and the L-analyticity of $V(x, t)$ in B for each $t > 0$ follows from the equilocal boundedness of the successive approximations $V_m(x, t)$ of $V(x, t)$ and Theorem 8.4.3 [6, p. 272].

We now show (1). For each $M \in \mathcal{M}$, $V(t)(M)$ is the solution of the initial value problem

$$\frac{du}{dt} = -uP_M(u), \quad u(0) = V(0)(M) = x(M).$$

By [1, Lemma 1], $|V(t)(M)| < |V(0)(M)|$ for all $t > 0$. Differentiating $|V(t)(M)|^2 = V(t)(M)\overline{V}(t)(M)$, we get
\[
\frac{1}{|V(t)(M)|} \frac{d|V(t)(M)|}{dt} = - \operatorname{Re} P_M(V(t)(M))
\]
\[
\leq - \frac{1 - |V(t)(M)|}{1 + |V(t)(M)|} \operatorname{Re} P_M(0)
\]
\[
\leq - \frac{1 - |V(0)(M)|}{1 + |V(0)(M)|} \operatorname{Re} P_M(0) \leq - \frac{1 - \|x\|}{1 + \|x\|} \delta
\]

and (1) follows.

3. Starlike functions. In \mathbb{C}, if $f(z) = \sum_{n=1}^{\infty} a_n z^n$, $a_1 \neq 0$, is holomorphic in Δ, then f is starlike in Δ if $(1 - t)f(\Delta) \subset f(\Delta)$ for all $t \in I = [0, 1]$ which is equivalent to $\operatorname{Re}(zf'(z)/f(z)) > 0$ for all $z \in \Delta$. We will define starlike functions in R and relate them to starlike function in \mathbb{C}.

Definition 3.1. A bianalytic map $F: F \to F$ is said to be starlike in F if $F(0) = 0$ and $(1 - t)F(B) \subset F(B)$ for all $t \in I$.

Theorem 3.2. Let $F(x) = \sum_{n=1}^{\infty} a_n x^n$ be locally bianalytic in B. Then F is starlike in B if and only if $F_M(z) = \sum_{n=1}^{\infty} a_n(M) z^n$ is starlike in Δ for all $M \in \mathcal{M}$.

Proof. Assume F is starlike in B and set $G(x, t) = (1 - t)F(x)$. Lemma 2.3 applies with $xH(x) = F(x)$ so that $F(x) = xF'(x)U(x)$ where U has positive real part. However, $U(0) = 1$ by equating coefficients, so by Lemma 2.4, $U \in \mathcal{P}$. Setting $x = z e$, we conclude

\[
\operatorname{Re} \frac{\sum_{n=1}^{\infty} a_n(M) z^{n-1}}{\sum_{n=1}^{\infty} na_n(M) z^{n-1}} > 0 \quad \text{for } z \in \Delta
\]

and, hence, F_M is starlike for each $M \in \mathcal{M}$.

Conversely, if F_M is starlike for every $M \in \mathcal{M}$, then for fixed $x \in B$, the function $V(x, t) = F^{-1}(e^{-t}F(x))$, defined near $t = 0$, satisfies the initial value problem

\[
\frac{\partial V(x, t)}{\partial t} = - \left[\frac{F(V(x, t))}{V(x, t)F'(V(x, t))} \right] V(x, t), \quad V(x, 0) = x.
\]

Set $P(w) = F(w)/wF'(w)$ for all $w \in B$. By hypothesis, $P \in \mathcal{P}$ and so by Lemma 2.6, $V(x, t)$ is the unique solution of the initial value problem

\[
dw/dt = -wP(w), \quad w(0) = x.
\]

Then $\|V(x, t)\| < \|x\| < 1$ and $F(V(x, t)) = e^{-t}F(x)$, $t > 0$. This implies that $(1 - t)F(B) \subset F(B)$ for $0 < t < 1$. To see the univalence of F in B, let $x_1, x_2 \in B$ such that $F(x_1) = F(x_2)$. Suppose $V_x(t) = V(x_1, t)$ is the unique solution of
\[\frac{dw}{dt} = -wP(w), \quad w(0) = x_i, \]

and let \(W_i(t) = F(V_i(t)), \ i = 1, 2. \) For small \(t > 0, \) \(W_i(t) \) satisfies the initial value problem

\[\frac{dw}{dt} = -w, \quad w(0) = F(x_i), \]

which has a unique solution \(W_i(t) = F(x_i)e^{-t} \) for \(t > 0. \) Since \(F(x_i) = F(x_2), \) \(W_i(t) = W_2(t) \) for \(t > 0. \) Since \(W_i(t) \to 0 \) as \(t \to +\infty, \) and since \(F \)
has a local inverse in an open neighborhood of 0, \(V_{x_i}(t) = V_{x_2}(t) \) for all \(t > M > 0. \) Then \(V_{x_1}(t) = V_{x_2}(t) \) for all \(t > 0; \) in particular, \(x_1 = V_{x_1}(0) = V_{x_2}(0) = x_2 \) and \(F \)
is univalent in \(B. \)

Example 1. Let \(F: B \to R \) be given by \(F(x) = x(1 - ax)^{-2} \) where \(||a|| < 1. \) Let \(M \in \mathbb{N} \) and set \(a(M) = a. \) Then \(|a| < 1 \) and \(F_M(z) = z/(1 - az)^2, \)
which is known to be starlike. Therefore \(F \) is starlike. If \(X = \{1, 2, \ldots, n\} \) so that \(C(X) = C = \mathbb{R}, \) \(F \) has the form

\[F(z_1, z_2, \ldots, z_n) = \left(z_1/ (1 - a_1z)^2, \ldots, z_n/ (1 - a_nz)^2 \right) \]

where \(|a_j| < 1, 1 < j < n. \)

If \(R = C[0, 1], \)

\[F(f)(x) = f(x)/(1 - a(x)f(x))^2, \quad 0 < x < 1. \]

If \(R = H^\infty(\Delta), \)

\[F(f)(z) = f(z)/(1 - a(z)f(z))^2, \quad |z| < 1. \]

Example 2. Other choices for \(F: B \to R \) that will make \(F \) starlike are

\[F(x) = x + ax^2, \quad a \in R, \ ||a|| < \frac{1}{2}, \]

where each \(a_j > 0 \) and \(\sum_{j=1}^{\infty} a_j < 2 \) with \(||a_j|| < 1 \) for each \(j. \)

4. Convex functions. In \(C, \) if \(f(z) = \sum_{n=1}^{\infty} a_n z^n, a_1 \neq 0, \) is holomorphic in \(\Delta, \)
then \(f \) is convex in \(\Delta \) if \(f(\Delta) \) is a convex domain. This is equivalent to \(\text{Re}(1 + zf''(z)/f'(z)) > 0 \) for all \(z \in \Delta. \) We will define convex functions in \(R \)
and relate them to convex functions in \(C. \)

Definition 4.1. A bianalytic map \(F: B \to R \) is said to be convex in \(B \) if \(F(B) \) is a convex domain.

Theorem 4.2. Let \(F(x) = \sum_{n=1}^{\infty} a_n x^n \) be locally bianalytic in \(B. \) \(F \) is convex in \(B \) if and only if \(F_M(z) = \sum_{n=1}^{\infty} a_n(M) z^n \) is convex in \(\Delta \) for each \(M \in \mathbb{N}. \) Thus the Alexander relation (\(F \) is convex in \(B \) if and only if \(G \) is starlike in \(B \)
where \(G(x) = xF'(x) \) for all \(x \in B \) holds.
Proof. Assume \(F \) is convex in \(B \). Set \(G(x, t) = \frac{1}{2}(F(e^{it}x) + F(e^{-it}x)) \) and apply Lemma 2.3. Expanding \(F(e^{\pm it}x) \) about \(x \), we have

\[
\frac{1}{2}(F(e^{it}x) + F(e^{-it}x)) = \frac{1}{2} \left[F(x) + F'(x)(e^{it}x - 1) + \frac{1}{2} F''(x)(e^{it}x - 1)^2 \right] + o(t)
\]

Therefore,

\[
\lim_{t \to 0^+} \frac{G(x, 0) - G(x, t)}{t} = xF'(x) \lim_{t \to 0^+} \frac{1 - \cos t}{t} + x^2 F''(x) \lim_{t \to 0^+} \cos \sqrt{t} \left(\frac{1 - \cos \sqrt{t}}{t} \right)
\]

\[
= \frac{1}{2} \left[xF'(x) + x^2 F''(x) \right].
\]

Therefore \(F'(x)U(x) = \frac{1}{2} [F'(x) + xF''(x)] \) where \(U \) has positive real part. Equating coefficients, we conclude that \(U(0) = \frac{1}{2} \) and so \(U \in \mathfrak{P} \). This means

\[
\text{Re} \left[1 + \frac{\sum_{n=1}^{\infty} n^2 a_n(M) z^{n-1}}{\sum_{n=1}^{\infty} n a_n(M) z^{n-1}} \right] > 0 \quad \text{for all } M \in \mathfrak{M}
\]

so that \(F_M \) is convex in \(\Delta \).

Suppose \(F_M \) is convex in \(\Delta \) for each \(M \in \mathfrak{M} \) and let \(x, y \in B_r = \{ x \in \mathbb{R} \mid \|x\| < r \}, r < 1 \). Since \(F_M \) is univalent, \(F \) is bianalytic in \(B \). Let \(V(t) = F^{-1}(tF(x) + (1 - t)F(y)) \). Then for all \(M \in \mathfrak{M} \),

\[
F_M(V(t)(M)) = tF_M(x(M)) + (1 - t)F_M(y(M)).
\]

Since \(F_M \) is convex in \(|z| < r \), \(|V(t)(M)| < r \). Choose \(M \in \mathfrak{M} \) such that \(\|V(t)\| = |V(t)(M)| < r \) and the convexity of \(F \) follows.

Example. (i) \(x(1 - ax)^{-1} \) when \(\|a\| < 1 \) is convex.

(ii) \(\log((1 + x)(1 - x))^{-1} \) is convex.

5. Close-to-convex functions. In \(\mathbb{C} \), a holomorphic function \(f : \Delta \to \mathbb{C} \) is said to be close-to-convex in \(\Delta \) if there is a convex function \(g : \Delta \to \mathbb{C} \) such that \(\text{Re}(f'(z)/g'(z)) > 0 \) for all \(z \in \Delta \). In [9], it is shown that every close-to-convex function is univalent. We define close-to-convex functions in \(R \) and show that every close-to-convex function in \(B \) is univalent. Compare [13] and [17].
Definition 5.1. Suppose $F: B \to R$ is L-analytic in B. We say that F is close-to-convex if $F_M: \Delta \to C$ is close-to-convex in Δ for all $M \in \mathcal{M}$.

Clearly if $G: B \to R$ is convex in B, $U \in \mathcal{P}$, and $F'(x) = G'(x)U(x)$ for all $x \in B$, then F is close-to-convex in B.

Theorem 5.2. If D is a convex domain in R and $G: D \to R$ is such that $G' \in \mathcal{P}(D)$, then G is univalent in D.

Proof. Let $x_1, x_2 \in D$, $x_1 \neq x_2$. Since D is convex, $\{tx_2 + (1 - t)x_1 | t \in I\} \subset D$. We have

$$\frac{d}{dt} G(tx_2 + (1 - t)x_1) = G'(tx_2 + (1 - t)x_1)(x_2 - x_1)$$

so that

$$G(x_2) - G(x_1) = (x_2 - x_1) \int_0^1 G'(tx_2 + (1 - t)x_1) \, dt.$$

Let $M \in \mathcal{M}$ be such that $\|x_2 - x_1\| = \|(x_2 - x_1)(M)\|$. Then

$$|(G(x_2) - G(x_1))(M)| = \|x_2 - x_1\| \left| \int_0^1 G'(tx_2 + (1 - t)x_1)(M) \, dt \right| \geq \|x_2 - x_1\| \int_0^1 \text{Re} \ G'(tx_2 + (1 - t)x_1)(M) \, dt > 0$$

and hence $G(x_2) \neq G(x_1)$.

Theorem 5.3. If F is close-to-convex in B, then F is univalent in B.

Proof. If there is a convex function $G: B \to R$ such that $F'(x) = G'(x)U(x)$ for some $U \in \mathcal{P}$, we may apply Theorem 5.2 to $F \circ G^{-1}$: $G(B) \to R$ to conclude that F is univalent.

Otherwise, let $x_1, x_2 \in B$, $x_1 \neq x_2$ and choose $M \in \mathcal{M}$ such that $|(x_2 - x_1)(M)| = \|x_2 - x_1\|$. Since F_M is close-to-convex in Δ, there is a convex function $g: \Delta \to C$ such that $\text{Re}(F_M(z)/g(z)) > 0$ for all $z \in \Delta$. Define $G: B \to R$ by $G(x) = \sum_{k=1}^{\infty} (b_k)x^k$ where $g(z) = \sum_{k=1}^{\infty} b_kz^k$. Then G is convex (in particular, bianalytic) in B. Consider $H \equiv F \circ G^{-1}$: $G(B) \to R$ and let $y_1 = G(x_1)$ and $y_2 = G(x_2)$. As in the proof of Theorem 5.2, we have

$$F(x_2) - F(x_1) = H(y_2) - H(y_1) = \int_0^1 H'(ty_2 + (1 - t)y_1)(y_2 - y_1) \, dt$$
so that

\[
|\{F(x_2) - F(x_1)\}(M)| = |\{H(y_2) - H(y_1)\}(M)|
\]

\[
= \left| \int_0^1 H'(y_2 + (1 - t)y_1)(M) \, dt \right| |(y_2 - y_1)(M)|
\]

\[
> \int_0^1 \text{Re} \, H'(y_2 + (1 - t)y_1)(M) \, dt |(y_2 - y_1)(M)|
\]

\[
= \int_0^1 \text{Re} \, \frac{F'(G^{-1}(y_2 + (1 - t)y_1)(M))}{g'(G^{-1}(y_2 + (1 - t)y_1)(M))} \, dt |(y_1 - y_2)(M)| > 0
\]

if \(|y_2 - y_1)(M)| \neq 0\). But

\[
\|x_2 - x_1\| = |(x_2 - x_1)(M)|
\]

\[
= \left| \int_0^1 (G^{-1})'(y_2 + (1 - t)y_1)(M) \, dt \right| |(y_2 - y_1)(M)|
\]

so the desired result follows.

Example. (i) \(F(x) = x(1 - ax)(1 - x)^{-2}\) is close-to-convex in \(B\) where \(\|a - \frac{1}{2}\| < \frac{1}{2}\) because \(F_M(z)\) is known to be close-to-convex for every \(M \in \mathfrak{M}\).

(ii) Every starlike function is close-to-convex.

(iii) Every convex function is close-to-convex.

6. Spirallike functions. In \(C\), if \(f(z) = \sum_{n=1}^{\infty} a_nz^n\), \(a_1 \neq 0\), is holomorphic in \(\Delta\), then \(f\) is spirallike in \(\Delta\) if \(\text{Re}(e^{-ia}\bar{z}f'(z)/f(z)) > 0\) for all \(z \in \Delta\) where \(a \in (-\pi/2, \pi/2)\). If \(f\) is spirallike in \(\Delta\), then \(f\) is univalent in \(\Delta [14]\). We will define spirallike functions in \(R\) and prove that they are also univalent in \(B\).

Definition 6.1. Suppose \(F(x) = \sum_{n=1}^{\infty} a_nx^n\) is locally biaalytic in \(B\). We say that \(F\) is spirallike in \(B\) if there exists \(a \in R\) such that \(\text{Re} \, a(M) > 0\) for all \(M \in \mathfrak{M}\) and \(U \in \mathfrak{P}\) such that

\[
a \frac{F(x)}{x} = F'(x)U(x) \quad \text{for all} \quad x \in B \left(\text{where} \quad \frac{F(x)}{x} = \sum_{n=1}^{\infty} a_nx^{n-1} \right). \quad (1)
\]

From (1), we see that \((F(x)/x)(M) \neq 0\) whenever \(M \in \mathfrak{M}\) and so \(F(x)/x\) and \(a\) are nonsingular. It is clear that (1) can be replaced by the condition \(\text{Re}(bxF'(x)/F(x))(M) > 0\) for all \(M \in \mathfrak{M}\) where \(b = a^{-1}\) and \(xF'(x)/F(x)\) means \((F(x)/x)^{-1}F(x)\).

Theorem 6.2. Every spirallike function in \(B\) is univalent in \(B\). Furthermore, if \(F\) is spirallike in \(B\), then \(F_M\) is spirallike in \(\Delta\) for each \(M \in \mathfrak{M}\).
Proof. Since \(F'(x) \) is nonsingular for each \(x \in B \), \(F \) is locally bianalytic in \(B \). For fixed \(x \in B \) and \(t \) near zero, set \(V(x, t) = F^{-1}(e^{-at}F(x)) \). Then \(V(x, t) \) is a solution of the initial value problem
\[
dw/dt = -wP(w), \quad w(0) = x,
\]
where \(P(w) = aF(w)/wF'(w) \). By (1), \(P \in \mathcal{P} \) and so by Lemma 2.6, \(V(x, t) \) is the unique solution for \(t > 0 \) and \(V(x, t) \to 0 \) as \(t \to \infty \). Let \(x_1, x_2 \in B \) such that \(F(x_1) = F(x_2) \) and let \(V_{x_i}(t) = V(x_i, t) \) be the unique solution of the initial value problem
\[
dw/dt = -wP(w), \quad w(0) = x_i, \quad i = 1, 2.
\]
Let \(W_{x_i}(t) = F(V_{x_i}(t)) \) for all \(t > 0, i = 1, 2 \). For small \(t > 0 \), \(W_{x_i}(t) \) satisfies the initial value problem
\[
dw/dt = -aw, \quad w(0) = F(x_i),
\]
which has a unique solution \(W_{x_i}(t) = F(x_i)e^{-at} \) for \(t > 0 \). Since \(F(x_1) = F(x_2) \), \(W_{x_i}(t) = W_{x_i}(t) \) for all \(t > 0 \). Since \(W_{x_i}(t) \to 0 \) as \(t \to +\infty \), we conclude that \(x_1 = x_2 \) as in Theorem 3.2.

That \(F \) is spirallike in \(\Delta \) follows from the equation
\[
a(M)[F(x)/x](M) = F'(x)(M)U(x)(M), \quad \text{and writing } x = z1 \text{ gives } a(M)[F_M(z)/z] = F_M'(z)U_M(z)
\]
where \(Re U_M(z) > 0 \). Write \(a(M) = \alpha e^{i\beta} \) where \(\alpha \in (-\pi/2, \pi/2) \).

Example. Let
\[
F(x) = x(1 - ax)^{-((1 + b))} = \sum_{n=1}^{\infty} \frac{(b + 1)(b + 2 \cdot 1) \cdots (b + n \cdot 1)}{n!} a^n x^n
\]
where \(||a|| < 1 \), \(||b|| < 1 \) and \(-1 < Re b(M) < 1 \) for all \(M \in \mathcal{M} \). For example, one might take \(b = \rho e^{ia} \cdot 1 \) where \(\alpha \) is real, \(0 < |a| < \pi \) and \(0 < \rho < 1 \). Then

\[
(F(x)/x) \cdot (F'(x))^{-1} \equiv (1 - ax)(1 + abx)^{-1},
\]
and setting \(U(x) = (1 + b)(F(x)/x)(F'(x))^{-1} \) yields

\[
Re U(x)(M) = Re \left[(1 + b(M))(1 - a(M)x(M))(1 + a(M)b(M)x(M))^{-1} \right].
\]

With \(z = a(M)x(M) \) and \(\beta = b(M) \),
\[
U(x)(M) = (1 + \beta)(1 - z)/(1 + \beta z),
\]
and it is easy to show \(Re U(x)(M) > 0 \).

7. \(\Phi \)-like functions. See [1] for the definitions of a \(\Phi \)-like function and a \(\Phi \)-like domain in \(C \).

Definition 7.1. Let \(F: B \to R \) be a locally bianalytic function in \(B \), and \(F(0) = 0 \). If \(\Phi: F(B) \to R \) is \(L \)-analytic, then we say \(F \) is \(\Phi \)-like in \(B \) if there is \(U \in \mathcal{P} \) such that \(\Phi(F(x)) = xF'(x)U(x) \) for all \(x \in B \).
Since $F(0) = 0$, $\Phi(0) = 0$. Letting $\alpha \to 0$ in $\Phi(F(ax))/\alpha = xF'(ax)U(ax)$, we have $\Phi'(0)x = xU(0)$ for all $x \in B$. Setting $x = \alpha 1$, where $0 < |\alpha| < 1$, we see that $\Phi'(0) = U(0)$.

Definition 7.2. Let D be a domain in R which contains 0 and let $P \in \mathcal{P}(D)$. If, for each $\alpha \in D$, the initial value problem

$$\frac{dw}{dt} = -\Phi(w), \quad w(0) = \alpha,$$

where $\Phi(w) = wP(w)$, has a unique solution $w = W(t) \in D$ for all $t > 0$ and $W(t) \to 0$ as $t \to +\infty$, then D is said to be Φ-like.

Note that starlike, convex, close-to-convex and spirallike functions are Φ-like for appropriate choices of Φ.

Theorem 7.3. If F is Φ-like in B for $\Phi(v) = vP(v)$ where $P \in \mathcal{P}(F(B))$, then F is univalent in B and $F(B)$ is Φ-like.

Proof. The proof follows along the lines of the proof of Theorem 1 in [5].

Theorem 7.4. If $F: B \to R$ is bianalytic in B with $F(0) = 0$ and $F(B)$ is Φ-like, then F is Φ-like in B.

Since our proof uses Lemma 2.3, and therefore is shorter than Theorem 2 [5], we will give our proof.

Proof. Since $F(B)$ is Φ-like, for each $x \in B$, let $W_x(t)$ be the unique solution of $\frac{dw}{dt} = -\Phi(w)$, $w(0) = F(x)$ where $\Phi(w) = wP(w)$, $P \in \mathcal{P}(F(B))$. Since F is bianalytic in B, set $V_x(t) = F^{-1}(W_x(t))$ for all $t > 0$. Then $V_x(0) = x$ and

$$F'(V_x(t))V_x'(t) = W_x'(t) = -W_x(t)P(W_x(t)) = -F(V_x(t))P(F(V_x(t)))$$

for all $t > 0$. Letting $t = 0$, we have $-F'(x)V_x'(0) = \Phi(F(x))$. To show that $-V_x'(0) = xU(x)$ for some $U \in \mathcal{P}$, let $G(x, t) = W_x(t) = F(V_x(t))$ in Lemma 3.2. Then

$$\lim_{t \to 0^+} \frac{G(x, 0) - G(x, t)}{t} = \lim_{t \to 0^+} \frac{F(V_x(0)) - F(V_x(t))}{t} = -F'(x)V_x'(0) = xH(x)$$

is L-analytic in B and so $H(x) = F'(x)U(x)$ where U has positive real part. Hence $xU(x) = -V_x'(0)$. Since $xF'(x)U(x) = \Phi(F(x))$, we have $U(0) = \Phi(0) = P(0)$, and so $Re U(0)(M) = Re P(0)(M) > 0$ for all $M \in \mathcal{P}$ and, by Lemma 2.4, $U \in \mathcal{P}$.

8. Convex F-holomorphic functions in $C(X)$. If D is an open set in the Banach space \mathcal{B} and $F: D \to \mathcal{B}$, then F is said to be F-holomorphic in D if for each $x \in D$, there is a bounded linear map $DF(x): \mathcal{B} \to \mathcal{B}$ such that

$$\lim_{h \to 0} \frac{\|F(x + h) - F(x) - DF(x)(h)\|}{\|h\|} = 0.$$
such that $F^{-1}: V \to D$ is F-holomorphic in V, then we say F is locally biholomorphic in B. If F is univalent and locally biholomorphic in B, we say that F is biholomorphic in B. If F is F-holomorphic in D, then for each $x_0 \in D$ there is a disk in D with center at x_0 such that $F(x) = \sum_{n=0}^{\infty} \frac{1}{n!} D^n F(x_0)((x - x_0)^n)$ where $D^n F(x_0) \in L_n(\mathbb{B}, \mathbb{B})$, space of all continuous symmetric n-linear maps of \mathbb{B} into \mathbb{B} and the series converges uniformly in this disk. If $F: B \to \mathbb{B}$ is F-holomorphic in B, then $F(x) = \sum_{n=0}^{\infty} \frac{1}{n!} D^n F(0)(x^n)$ for all $x \in B$ \cite[Theorem 3.16.2]{7}. If \mathbb{B} is a commutative Banach algebra with identity, it is clear that every L-analytic function is F-holomorphic; however, not every F-holomorphic function is L-analytic \cite[p. 115]{7}. We will prove that F-holomorphic implies L-analytic in the special case in which F is a biholomorphic map of the unit ball of $C(X)$ onto a convex domain in $C(X)$.

Assume X is a compact T_2-space such that each point of X is a G_δ; i.e., each $x \in X$ is the intersection of a countable number of open neighborhoods of x. Let $C(X)$ be the Banach algebra of complex valued continuous functions on X (with sup norm and pointwise multiplication).

Theorem 8.1. Let $C(X)$ be as above. If $F: B \to C(X)$ is a convex biholomorphic function in B such that $DF(0) = I$, then F is L-analytic in B and hence bianalytic in B.

Without loss of generality, we assume $F(0) = 0$. The proof will be given in the following six lemmas.

Lemma 8.2. If $k, u \in C(X), k \equiv 0$ on an open neighborhood of $x_0 \in X$, $u(x_0) = 1$ and $|u(x)| < 1$ if $x \neq x_0$ (such a peaking function u exists since every point of X is G_δ), then when $|\alpha| < 1$, we have

$$\left[DF(\alpha u) \right]^{-1} (D^n F(\alpha u)(k^n))(x_0) = 0 \quad \text{for } n = 2, 3, \ldots .$$

Proof. Assume $k \equiv 0$ on the open neighborhood N of x_0. Then N^c, complement of N, is compact, so that for fixed $\alpha, 0 < |\alpha| < 1$, we can choose $r > 0$ (say $r = |\alpha(1 - m)/(||k|| + 1)$ where $m = \sup\{|u(x)| | x \in N^c\} < 1)$ so that

$$||\alpha u + \beta k|| = |(\alpha u + \beta k)(x_0)| = |\alpha| \quad \text{for all } \beta \in \mathbb{C}, |\beta| < r.$$

Define $l \in C(X)^*$ by $l(f) = |\alpha| f(x_0)/\alpha$ for all $f \in C(X)$. Then $l(\alpha u) = |\alpha| = ||\alpha u||$ and $||l|| = 1$. Since F is convex biholomorphic in B, we know by Theorem 4 \cite[p. 583]{16} there is a function $w: B \times B \to C(X)$ such that w is F-holomorphic in each variable, $w(\alpha u, \alpha u) = 0$, $Re \, l(w(\alpha u, \alpha u + \beta k)) > 0$ if $|\beta| < r$, and

$$F(\alpha u) - F(\alpha u + \beta k) = DF(\alpha u)(w(\alpha u, \alpha u + \beta k)).$$
Expanding $F(\alpha u + \beta k)$ about αu, we have

$$F(\alpha u + \beta k) = F(\alpha u) + \sum_{n=1}^{\infty} \frac{\beta^n}{n!} D^n F(\alpha u)(\alpha u)^n$$

so that

$$w(\alpha u, \alpha u + \beta k) - \beta k - 2 \sum_{n=1}^{\infty} \frac{\beta^n}{n!} [DF(\alpha u)]^{-1} D^n F(\alpha u)(\alpha u)^n.$$

Applying l, we have

$$v(\beta) \equiv lw(\alpha u, \alpha u + \beta k) = -\sum_{n=1}^{\infty} \frac{\beta^n}{n!} l\left([DF(\alpha u)]^{-1} D^n F(\alpha u)(\alpha u)^n\right)$$

is a holomorphic function of β for $|\beta| < r$ and Re $v(\beta) > 0$. Since $v(0) = 0$, $v(\beta) \equiv 0$ and Lemma 8.2 follows.

Lemma 8.3. If $k, u \in C(X)$, $k(x_0) = 0$ and u is as in Lemma 8.2, then $[DF(\alpha u)]^{-1}(D^n F(\alpha u)(\alpha u)^n)(x_0) = 0$ for $n = 2, 3, \ldots$.

We will prove this without utilizing the G_δ property. Let A be an index set of the open neighborhoods of x_0 and let A_α be the set of functions $u_\alpha k$ where $u_\alpha \in C(X)$, $u_\alpha = 1$ on U_α^c, complement of U_α, support of $u_\alpha \subseteq \overline{U_\alpha}^c$, $0 < u_\alpha \leq 1$, where U_δ is an open neighborhood of x_0 and $\overline{U_\alpha} \subseteq U_\alpha$. $A_\alpha \neq \emptyset$ by Urysohn’s Lemma. Let $\mathcal{U} = \{A_\alpha | \alpha \in A\}$. It is routine to show that \mathcal{U} is a filterbase in $C(X)$ which converges (in the norm topology) to k [2, p. 211]. Apply Lemma 8.2 to each $u_\alpha k$ and the result follows.

Lemma 8.4. If k, u are as in Lemma 8.3, we have

$$[DF(\alpha u)]^{-1} D^2 F(\alpha u)(u, k)(x_0) = 0.$$

Proof. First assume k is as in Lemma 8.2. Set $(1 + t^2)^{1/2}g = \alpha(1 + it)u + \beta k$ where $|\beta| = t^{1/2}$, and t is sufficiently small and positive so that

$$\|g\| = \left|\frac{\alpha(1 + it)u(x_0) + \beta k(x_0)}{\sqrt{1 + t^2}}\right| < |\alpha| < 1.$$

Let l be the same as in the proof of Lemma 8.2. Since F is convex biholomorphic in B, we know again by Theorem 4 [16] that $F(\alpha u) - F(g) = DF(\alpha u)(w(\alpha u, g))$ where Re $l(w(\alpha u, g)) > 0$. Expanding $F(g)$ about αu, we have

$$F(g) = F(\alpha u) + \sum_{n=1}^{\infty} \frac{1}{n!} D^n(\alpha u)(g - \alpha u)^n$$

$$= F(\alpha u) + DF(\alpha u)(g - \alpha u)$$

$$+ D^2 F(\alpha u)\left(\frac{i + \alpha u}{\sqrt{1 + t^2}}, \frac{\beta k}{\sqrt{1 + t^2}}\right) + O(t^2)$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
since \((1 + t^2)^{-1/2} - 1 = O(t^2)\) and \(|\beta| = t^{1/2}\). By Lemma 8.2 we then have
\[
w(au, g) = -(g - au) - \frac{i\alpha u f \beta}{1 + t^2} \left[DF(au) \right]^{-1} D^2 F(au)(u, k) + O(t^2)
\]
so that
\[
\left| \frac{\alpha}{\alpha} \right| w(au, g)(x_0) = \frac{-i|\alpha|}{\sqrt{1 + t^2}} \sum_{l=0}^{n} \frac{-i|\alpha| \beta}{1 + t^2} \left[DF(au) \right]^{-1} D^2 F(au)(u, k)(x_0) + O(t^2).
\]
Since \(\Re I(w(au, g)) > 0\), we conclude that
\[
\Re \frac{-i|\alpha| \beta}{1 + t^2} \left[DF(au) \right]^{-1} D^2 F(au)(u, k)(x_0) > 0.
\]
Since \(\arg \beta\) is arbitrary, we have
\[
\left[DF(au) \right]^{-1} D^2 F(au)(u, k)(x_0) = 0 \quad \text{if } k \equiv 0
\]
in an open neighborhood of \(x_0\). Now assume \(k \in C(X)\) and \(k(x_0) = 0\). Apply the argument in Lemma 8.3 to obtain the conclusion.

Lemma 8.5. If \(k, \alpha\) are as in Lemma 8.3, then
\[
\left[DF(au) \right]^{-1} D^n F(au)(u^l, k^{n-l})(x_0) = 0
\]
when \(0 < l < n, n = 2, 3, 4, \ldots\).

Proof. When \(l = 0\) and \(n > 2\), the result is Lemma 8.3. When \(l = 1\) and \(n = 2\), the result is Lemma 8.4. Assume the result is true for fixed \(l\) and \(n\) and prove it for \(l + 1\) and \(n + 1\). Let \(G = F^{-1}\). Then, for all \(f \in B\), we have \(G \circ F(f) = f\), \(DG(F(f)) \circ DF(f) = I\), identity map from \(C(X)\) into \(C(X)\), and
\[
D^2 G(F(f))(DF(f)(g), DF(f)(h)) + DG(F(f))(D^2 F(f)(g, h)) = 0,
\]
zero map from \(C(X)\) into \(C(X)\), for all \(f \in B\) and all \(g, h \in C(X)\). Hence
\[
D^2 G(F(f))(g, h) = -DG(F(f))\left[D^2 F(f)\left[DF(f) \right]^{-1}(g), DF(f)^{-1}(h) \right] = -\left[DF(f) \right]^{-1}\left[D^2 F(f)\left[DF(f) \right]^{-1}(g), DF(f)^{-1}(h) \right].
\]
Define \(H: B \to C_n(C(X), C(X))\), space of all continuous symmetric \(n\)-linear maps of \(C(X)^n\) into \(C(X)\), by
\[
H(f) = \left[DF(f) \right]^{-1} D^n F(f) = DG(F(f)) D^n F(f) \quad \text{for all } f \in B.
\]
By the induction assumption $H(\alpha u)(u'^l, k^{n-l})(x_0) = 0$ and $H(\alpha u + \epsilon u)(u'^l, k^{n-l})(x_0) = 0$ for small $|\epsilon| > 0$. Hence

$$DH(\alpha u)(u)(u'^l, k^{n-l})(x_0) = \lim_{\epsilon \to 0} \frac{H(\alpha u + \epsilon u)(u'^l, k^{n-l})(x_0) - H(\alpha u)(u'^l, k^{n-l})(x_0)}{\epsilon} = 0.$$

On the other hand,

$$DH(f)(u) = D^2G(F(f))(D^nF(f), DF(f)(u)) + DG(F(f))(D(D^nF(f))(u))$$

$$= -[DF(f)]^{-1}[D^2F(f)(H(f), u)] + [DF(f)]^{-1}(D(D^nF(f))(u)).$$

Since $H(\alpha u)(u'^l, k^{n-l}) \in C(X)$ and vanishes at x_0, the first term is zero when evaluated at $f = \alpha u$ and (u'^l, k^{n-l}) and x_0 by Lemma 8.4. Hence

$$0 = DH(\alpha u)(u)(u'^l, k^{n-l})(x_0)$$

$$= [DF(\alpha u)]^{-1}(D(D^nF(\alpha u)(u'^l, k^{n+1-(l+1)}))(u))(x_0)$$

which is the result for $l + 1$ and $n + 1$.

Lemma 8.6. Let $u \in C(X)$ such that $u(x_0) = 1$ and $0 < u(x) < 1$ if $x \neq x_0$. If $f \in B$, then $F(f)(x_0) = F(uf)(x_0)$.

Proof. If $f(x_0) = 0$, then $(uf)(x_0) = 0$ and

$$F(f)(x_0) = \sum_{n=1}^{\infty} \frac{1}{n!} D^nF(0)(f^n)(x_0) = f(x_0)$$

since f plays the role of k in Lemma 8.3. Similarly, $F(uf)(x_0) = (uf)(x_0)$.

Assume $f(x_0) \neq 0$. Let $N = \{x \in X|u(x) < |f(x_0)|/2||f||\}$ and set $v(x) = u(x)$ if $x \in N$ and $v(x) = \min(u(x), |f(x_0)|/|f(x)|)$ if $x \in N^c$. Then $v \in C(X)$ and $|(vf)(x)| < \frac{1}{2}|f(x_0)|$ if $x \in N$ and $|(vf)(x)| = \min(u(x), |f(x)|)$ if $x \in N^c$. Therefore $vf/(f(x_0))$ plays the role of u in Lemma 8.5. Setting $\alpha = 0$, in Lemma 8.5, we have, for all nonnegative integers $l < n$,

$$D^nF(0)((vf/f(v_0))', ((1 - v)f)^{n-l})(x_0) = 0$$

and hence

$$D^nF(0)((vf)'', ((1 - v)f)^{n-l})(x_0) = 0.$$
Then
\[F(f)(x_0) = F(\psi f + (1 - \nu)f)(x_0) \]
\[= \sum_{n=1}^{\infty} \frac{1}{n!} D^n F(0)((\psi f + (1 - \nu)f)^n)(x_0) \]
\[= \sum_{n=1}^{\infty} \frac{1}{n} \sum_{i=0}^{n} \frac{1}{i!(n-i)!} D^n F(0)((\psi f)'((1 - \nu)f)^n-i)(x_0) \]
\[= \sum_{n=1}^{\infty} \frac{1}{n!} D^n F(0)((\psi f)^n)(x_0) = F(\psi f)(x_0). \]

If we use \(uf \), instead of \(f \), the same \(\nu \) works for \(uf \) and we have \(F(uf)(x_0) = F(vuf)(x_0). \) Since \(uu \) can be used instead of \(\nu \) for \(f \), we have \(F(f)(x_0) = F(vuuf)(x_0) \) and hence \(F(uf)(x_0) = F(uf)(x_0). \)

Lemma 8.7. If \(f, g \in B \) such that \(f(x_0) = g(x_0) \), then \(F(f)(x_0) = F(g)(x_0). \)

Proof. Let \(\epsilon > 0 \) be given. Since \(F \) is continuous at \(f \), there is \(\delta > 0 \) such that \(\|F(f) - F(h)\| < \epsilon \) if \(\|f - h\| < \delta \). Let \(N_1 = \{x \in X | f(x) - g(x) < \delta \} \) and let \(N \) be an open neighborhood of \(x_0 \) such that \(\overline{N} \subset N_1 \). Since \(x_0 \) is a \(G_\delta \), there is \(u \in C(X) \) such that \(u(x_0) = 1, 0 < u(x) < 1, \) if \(x \neq x_0 \), and \(u \equiv 0 \) on \(N_1 \). By Urysohn's Lemma, there is \(v \in C(X) \) such that \(0 < v(x) < 1 \) for all \(x \in X \), \(v \equiv 1 \) on \(N \) and \(v \equiv 0 \) on \(N_1 \). Set \(h = vg + (1 - \nu)f \). Then \(\|f - h\| < \delta \) and \(ug = uh \). Therefore, by Lemma 8.6,
\[|F(f)(x_0) - F(g)(x_0)| = |F(f)(x_0) - F(ug)(x_0)| \]
\[= |F(f)(x_0) - F(ug)(x_0)| \]
\[= |F(f)(x_0) - F(h)(x_0)| < \|F(f) - F(h)\| < \epsilon. \]

Since \(\epsilon \) can be made arbitrarily small, \(F(f)(x_0) = F(g)(x_0). \)

We can now prove Theorem 8.1.

Proof. Let \(f, g \in B \) and \(x_0 \in X \). For small \(|\alpha| \), we have that \(f + \alpha g \), \(f + \alpha g(x_0)l \in C(X) \) and agree at \(x_0 \); therefore, by Lemma 8.7, \(F(\alpha f + \alpha g)(x_0) = F(f + \alpha g(x_0)l). \) Therefore,
\[DF(f)(g)(x_0) = \lim_{\alpha \to 0} \frac{F(f + \alpha g)(x_0) - F(f)(x_0)}{\alpha} \]
\[= \lim_{\alpha \to 0} \frac{F(f + \alpha g(x_0)l)(x_0) - F(f)(x_0)}{\alpha} \]
\[= DF(f)(g(x_0)l)(x_0) = g(x_0)DF(f)(1)(x_0). \]

Since \(x_0 \) is arbitrary, we have \(DF(f)(g) = gDF(f)(1); \) i.e., \(F \) is \(L \)-analytic in \(B \) and \(D'(f) = DF(f)(1). \)
Remark 1. The normalization $DF(0) = I$ is necessary in Theorem 8.1 as is seen in the following example. Define $F: C[0, 1] \to C[0, 1]$ by $F(f)(x) = (x + \frac{1}{2})f(x) + (\frac{1}{2} - x)f(x + \frac{1}{2})$ if $x \in [0, \frac{1}{2})$ and $F(f)(x) = f(x)$ if $x \in [\frac{1}{2}, 1]$. Then F is a continuous linear map of $C[0, 1]$ onto $C[0, 1]$ and so F is a convex biholomorphic function in B. But F is not L-analytic and $DF(0) = F \neq I$.

Without the normalization, we have

Corollary. If F is biholomorphic in B, and $F(B)$ is convex then $F = L \circ G$ where L is a univalent affine map of $C(X)$ onto $C(X)$ and G is bianalytic in B.

Proof. Define $L(f) = F(0) + DF(0)(f)$ for all $f \in B$ and $G = L^{-1} \circ F$ satisfies Theorem 8.1.

Remark 2. The proof of Theorem 8.1 depends on the existence of a peaking function u at each point $x \in X$. In general, an arbitrary compact T_α-space X does not have peaking functions at each point; for example, if X is the set of all ordinals which are less than or equal to the first uncountable ordinal with the order topology, then the first uncountable ordinal is not a G_δ point. See [10, Exercises 1.1, 5.C, and 4.J]. It would be interesting to know if Theorem 8.1 is true for an arbitrary compact T_α-space.

Note that Theorem 8.1 contains Theorem 3 of [15]. To see this, take $X = \{1, 2, \ldots, n\}$ with the discrete topology. Also compare Theorem 8 of [16].

9. Example and a remark. We now give an example of a function which is univalent and F-holomorphic in B such that F^{-1} is not F-holomorphic in $F(B)$, $F(B)$ contains an open set, but $F(B)$ is not open. The example is in the Banach algebra $H^\infty = \{f|f: \Delta \to C\text{ is holomorphic in }\Delta \text{ and } \sup\{|f(z)| | z \in \Delta\} < \infty\}$ [3], [8]. Define $F: B \to H^\infty$ by $F(f) = f + af^2$ for nonconstant $a \in H^\infty$ such that for some $z_0 \in \Delta$, $|a(z_0)| = \frac{1}{2}$. To show that F is univalent in B, suppose that $f, g \in B$ such that $F(f) = F(g)$. Then $(f - g)(1 + a(f + g)) = 0$ which implies that $f(z) = g(z)$ or $f(z) + g(z) = -1/a(z)$ for each $z \in \Delta$. We claim the first equation always holds. By hypothesis, there is $z_0 \in \Delta$ such that $|a(z_0)| = \frac{1}{2}$. Since $f, g \in B$, there is $\delta > 0$ such that $|f(z)| < 1 - \delta$ and $|g(z)| < 1 - \delta$ in some open neighborhood of z_0. The second equation implies $1/|a(z)| < 2 - 2\delta$ in this neighborhood, hence $|a(z_0)| > 1/(2 - 2\delta) > \frac{1}{2}$, which is a contradiction. Hence $f(z) = g(z)$ in this open neighborhood of z_0 and therefore $f = g$.

To prove that F^{-1} is not F-holomorphic in $F(B)$, observe that $F'(f) = 1 + 2af$ and so $F'(f)$ is nonsingular as long as $1 + 2a(z)f(z) \neq 0$ for $z \in \Delta$. If $|a(z_0)| > \frac{1}{2}$, let f be the constant function $-1/2a(z_0)$. Then $\|f\| < 1$ and $F'(f)$ is singular. It follows that F^{-1} is not F-holomorphic in $F(B)$.

$F(B)$ contains an open set since the equation $\epsilon = f + af^2$ has the solution
\[f = \frac{-1 + \sqrt{1 + 4ae}}{2a} = \frac{2e}{(1 + \sqrt{1 + 4ae})} \text{ where } e \in H^\infty \text{ and } ||e|| \text{ is small.} \]

To prove that \(F(B) \) is not open, suppose \(|a(z_1)| > \frac{1}{2} \) and let \(f \) be the constant function \(-1/2a(z_1) \). Then \(F(f) = a/4a^2(z_1) - 1/2a(z_1) \), and if \(e \in H^\infty, ||e|| \text{ small,} \) we have \(a/4a^2(z_1) - 1/2a(z_1) + e = f + af^2 \) for some \(f \in B \) if and only if \(f = -1/2a(z_1) + \delta \) where \(\delta \in H^\infty \) and \(e(z) = \delta(z)(1 - a(z)/a(z_1)) + a(z)\delta^2(z) \). Let \(e \) have the property that \(e(z_1) = 0 \). Then \(0 = e(z_1) = a(z_1)\delta^2(z_1) \) so we conclude \(\delta(z_1) = 0 \). Since \(e(z) = \delta(z)(1 - a(z)/a(z_1)) + a(z)\delta^2(z) \), it follows that \(e \) has at least a double zero at \(z_1 \). This means that any function of the form \(a/4a^2(z_1) - 1/2a(z_1) + e \) such that \(e(z_1) = 0 \) and \(e'(z_1) \neq 0 \) cannot lie in \(F(B) \).

This example shows that Theorem 5 [5] is false. \(F \) is univalent and \(F \)-holomorphic in \(B \) with \(F(0) = 0 \) and \(DF(0) = I \), but \(F(B) \) is not open. Hence \(F \) is not locally biholomorphic in \(B \) and therefore \(F \) is not \(\Phi \)-like for any function \(\Phi \).

References

Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506

Current address (L. F. Heath): Department of Mathematics, University of Texas at Arlington, Arlington, Texas 76019