Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Borel parametrizations


Author: R. Daniel Mauldin
Journal: Trans. Amer. Math. Soc. 250 (1979), 223-234
MSC: Primary 54H05; Secondary 04A15, 28A05
DOI: https://doi.org/10.1090/S0002-9947-1979-0530052-3
MathSciNet review: 530052
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let X and Y be uncountable Polish spaces and B a Borel subset oi $ X\, \times \,Y$ such that for each x, $ {B_x}$ is uncountable. A Borel parametrization of B is a Borel isomorphism, g, of $ X\, \times \,E$ onto B where E is a Borel subset of Y such that for each x, $ g\left( {x,\, \cdot } \right)$ maps E onto $ {B_x}\, = \,\left\{ {y:\,\left( {x,\,y} \right)\, \in \,B} \right\}$. It is shown that B has a Borel parametrization if and only if B contains a Borel set M such that for each x, $ {M_x}$ is a nonempty compact perfect set, or, equivalently, there is an atomless conditional probability distribution, $ \mu $, so that for each x, $ \mu \left( {x,\,{B_x}} \right)\, > \, 0$. It is also shown that if Y is dense-in-itself and $ {B_x}$ is not meager, for each x, then B has a Borel parametrization.


References [Enhancements On Off] (What's this?)

  • [1] V. Ya. Arsenin, On the nature of the projection of certain B-sets, Izv. Akad. Nauk SSSR Ser. Mat. 4 (1940), 403-410. MR 3, 225. MR 0005885 (3:225h)
  • [2] D. Blackwell and C. Ryll-Nardzewski, Non-existence of everywhere proper conditional distributions, Ann. Math. Statist. 34 (1963), 223-225. MR 0148097 (26:5606)
  • [3] D. Cenzer and R. D. Mauldin, Measurable parametrizations and selections, Trans. Amer. Math. Soc. 245 (1978), 399-408. MR 511418 (80i:28010)
  • [4] J. R. Choksi, Measurable transformations on compact groups, Trans. Amer. Math. Soc. 184 (1973), 101-124. MR 0338311 (49:3076)
  • [5] K. Kunugui, Sur un problème de M. E. Szpilrajn, Proc. Imperial Acad. Sci. Tokyo 16 (1940), 73-78. MR 0001819 (1:302a)
  • [6] K. Kuratowski, Topology.Vol. I, Academic Press, New York, 1966. MR 0217751 (36:840)
  • [7] D. G. Larman, Projecting and uniformizing Borel sets with $ {K_\sigma }$-sets. II, Mathematika 20 (1973), 233-246. MR 0362271 (50:14713)
  • [8] S. Mazurkiewiez and W. Sierpinski, Sur un problème concernant les fonctions continues, Fund. Math. 6 (1924), 161-169.
  • [9] J. C. Oxtoby, Measure and category, Springer-Verlag, New York, 1971. MR 584443 (81j:28003)
  • [10] J. Saint-Raymond, Boréliens à coupes $ {K_\sigma }$, Bull. Soc. Math. France 104 (1976), 389-400. MR 0433418 (55:6394)
  • [11] H. Sarabadhikari, Some uniformization results, Tech. Report Math-Stat., Indian Statistical Institute, June 5, 1975.
  • [12] W. Sierpinski, Sur deux complémentaires analytiques non séparables B, Fund. Math. 17 (1931), 296-297. MR 0027815 (10:358e)
  • [13] A. H. Stone, Measure theory, Lecture Notes in Math., no. 541, Springer-Verlag, Berlin and New York, 1976, pp. 43-48. MR 0450492 (56:8786)
  • [14] H. Tanaka, Some results in the effective descriptive set theory, Publ. Res. Inst. Math. Sci. Kyoto Univ. Ser. A 3 (1967), 11-52. MR 0228345 (37:3926)
  • [15] R. Vaught, Invariant sets in topology and logic, Fund. Math 82 (1974), 269-294. MR 0363912 (51:167)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54H05, 04A15, 28A05

Retrieve articles in all journals with MSC: 54H05, 04A15, 28A05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1979-0530052-3
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society