Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Space curves that point almost everywhere


Author: J. B. Wilker
Journal: Trans. Amer. Math. Soc. 250 (1979), 263-274
MSC: Primary 53A04
DOI: https://doi.org/10.1090/S0002-9947-1979-0530055-9
MathSciNet review: 530055
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a simple, closed, continuously differentiable curve $ r:\,[0,\,1]\, \to \,{E^d}\,(d\, \geqslant \,3)$ whose tangent vector never points twice in the same direction of $ {S^{d\, - \,1}}$ yet sweeps out a set of directions equal to almost all of $ {S^{d\, - \,1}}$.


References [Enhancements On Off] (What's this?)

  • [1] F. Hausdorff, Set theory, Chelsea, New York, 1957. MR 0086020 (19:111a)
  • [2] L. L. Helms, Introduction to potential theory, Wiley, New York, 1969. MR 0261018 (41:5638)
  • [3] D. Hilbert, Ueber die stetige Abbildung einer Linie auf ein Flächenstück, Math. Ann. 38 (1891), 459-460. MR 1510683
  • [4] K. Knopp, Einheitliche Erzeigung und Darstellung der Kurven von Peano, Osgood und v. Koch, Arch. Math. 26 (1918), 103-115.
  • [5] H. Lebesgue, Sur les correspondences entre les points de deux espaces, Fund. Math. 2 (1921), 256-285.
  • [6] W. F. Osgood, A Jordan curve of positive area, Trans. Amer. Math. Soc. 4 (1903), 107-112. MR 1500628
  • [7] G. Peano, Sur une courbe, qui remplit toute une aire plane, Math. Ann. 36 (1890), 157-160. MR 1510617
  • [8] J. B. Wilker, Russian dolls, Canad. Math. Bull. 21 (1978), 237-240. MR 0640110 (58:30709)
  • [9] -, Hausdorff obstructions to packing $ \left( {N\, - \,1} \right)$-balls in N-space (to appear).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53A04

Retrieve articles in all journals with MSC: 53A04


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1979-0530055-9
Keywords: Peano curve, Osgood curve, Vitali covering theorem
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society