Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Deforming twist-spun knots


Author: R. A. Litherland
Journal: Trans. Amer. Math. Soc. 250 (1979), 311-331
MSC: Primary 57Q45
DOI: https://doi.org/10.1090/S0002-9947-1979-0530058-4
MathSciNet review: 530058
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In [15] Zeeman introduced the process of twist-spinning an n-knot to obtain an (n + l)-knot, and proved the remarkable theorem that a twist-spun knot is fibred. In [2] Fox described another deformation which can be applied during the spinning process, and which he called rolling. We show that, provided one combines the rolling with a twist, the resulting knot is again fibred. In fact, this result holds for a larger class of deformations, defined below.


References [Enhancements On Off] (What's this?)

  • [1] Marshall M. Cohen, A general theory of relative regular neighbourhoods, Trans. Amer. Math. Soc. 136 (1969), 189-229. MR 0248802 (40:2052)
  • [2] R. H. Fox, Rolling, Bull. Amer. Math. Soc. 72 (1966), 162-164. MR 0184221 (32:1694)
  • [3] C. H. Giften, Homeotopy groups of fibred knots and links, Notices Amer. Math. Soc. 13 (1966), 327. Abstract #632-10.
  • [4] Herman Gluck, The embedding of two-spheres in the four-sphere, Trans. Amer. Math. Soc. 104 (1962), 371-383. MR 0146807 (26:4327)
  • [5] Deborah L. Goldsmith, Motions of links in the 3-sphere, Bull. Amer. Math. Soc. 80 (1974), 62-66. MR 0328914 (48:7256)
  • [6] -, Symmetric fibered links, Ann. of Math. Studies, No. 84, Princeton Univ. Press, Princeton, N. J., 1975, pp. 3-23. MR 0380766 (52:1663)
  • [7] C. McA. Gordon, Some higher-dimensional knots with the same homotopy groups, Quart. J. Math. Oxford Ser. (2) 24 (1973), 411-422. MR 0326746 (48:5089)
  • [8] Mitsuyoshi Kato, A concordance classification of PL homeomorphisms of $ {S^p}\, \times \,{S^q}$, Topology 8 (1969), 371-383. MR 0256401 (41:1057)
  • [9] J. Milnor, On the 3-dimensional Brieskorn manifolds M(p, q, r), Ann. of Math. Studies, No. 84, Princeton Univ. Press, Princeton, N. J., 1975, pp. 175-225. MR 0418127 (54:6169)
  • [10] Dale Rolf sen, Knots and links, Math. Lecture Series 7, Publish or Perish, Berkeley, Calif., 1976. MR 0515288 (58:24236)
  • [11] Jonathan Simon, Roots and centralizers of peripheral elements in knot groups (preprint). MR 0418079 (54:6123)
  • [12] F. Waldhausen, Irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88. MR 0224099 (36:7146)
  • [13] C. T. C. Wall, Locally flat PL submanifolds with codimension two, Proc. Cambridge Philos. Soc. 63 (1967), 5-7. MR 0227993 (37:3577)
  • [14] E. C. Zeeman, Seminar on combinatorial topology, Inst. Hautes Études Sci. mimeographed notes, 1963.
  • [15] -, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471-495. MR 0195085 (33:3290)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57Q45

Retrieve articles in all journals with MSC: 57Q45


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1979-0530058-4
Keywords: Twist-spinning, rolling, deformation, fibred knot
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society