Orthogonal polynomials defined by a recurrence relation

Author:
Paul G. Nevai

Journal:
Trans. Amer. Math. Soc. **250** (1979), 369-384

MSC:
Primary 42C05

DOI:
https://doi.org/10.1090/S0002-9947-1979-0530062-6

MathSciNet review:
530062

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: R. Askey has conjectured that if a system of orthogonal polynomials is defined by the three term recurrence relation

**[1]**K. M. Case,*Orthogonal polynomials revisited*, Theory and Application of Special Functions, (R. A. Askey, ed.), Academic Press, New York, 1975, pp. 289-304. MR**0390322 (52:11148)****[2]**J. Favard,*Sur les polynomes de Tchebicheff*, C. R. Acad. Sci. Paris**200**(1935), 2052-2053.**[3]**P. G. Nevai,*Orthogonal polynomials*, Mem. Amer. Math. Soc. (to appear). MR**519926 (80k:42025)****[4]**-,*On orthogonal polynomials*, J. Approximation Theory (to appear).**[5]**-,*Distribution of zeros of orthogonal polynomials*, Trans. Amer. Math. Soc. (to appear). MR**525677 (80j:42041)****[6]**G. Szegö,*Orthogonal polynomials*, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R.I., 1967.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
42C05

Retrieve articles in all journals with MSC: 42C05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1979-0530062-6

Article copyright:
© Copyright 1979
American Mathematical Society