The analytic continuation of the discrete series. I

Author:
Nolan R. Wallach

Journal:
Trans. Amer. Math. Soc. **251** (1979), 1-17

MSC:
Primary 22E45; Secondary 17B10, 20G05

MathSciNet review:
531967

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper the analytic continuation of the holomorphic discrete series is defined. The most elementary properties of these representations are developed. The study of when these representations are unitary is begun.

**[1]**Harish-Chandra,*Representations of a semisimple Lie group on a Banach space. I*, Trans. Amer. Math. Soc.**75**(1953), 185–243. MR**0056610**, 10.1090/S0002-9947-1953-0056610-2**[2]**Harish-Chandra,*Representations of semisimple Lie groups. IV*, Amer. J. Math.**77**(1955), 743–777. MR**0072427****[3]**Harish-Chandra,*Representations of semisimple Lie groups. VI. Integrable and square-integrable representations*, Amer. J. Math.**78**(1956), 564–628. MR**0082056****[4]**Harish-Chandra,*Discrete series for semisimple Lie groups. II. Explicit determination of the characters*, Acta Math.**116**(1966), 1–111. MR**0219666****[5]**Sigurđur Helgason,*Differential geometry and symmetric spaces*, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR**0145455****[6]**A. W. Knapp and K. Okamoto,*Limits of holomorphic discrete series*, J. Functional Analysis**9**(1972), 375–409. MR**0299726****[7]**S. Murakami,*Cohomology groups of vector valued forms on symmetric spaces*, Lecture notes, Univ. of Chicago, Summer 1966.**[8]**Paul J. Sally Jr.,*Analytic continuation of the irreducible unitary representations of the universal covering group of 𝑆𝐿(2,𝑅)*, Memoirs of the American Mathematical Society, No. 69, American Mathematical Society, Providence, R. I., 1967. MR**0235068****[9]**Ichirô Satake,*Factors of automorphy and Fock representations*, Advances in Math.**7**(1971), 83–110. MR**0348043****[10]**Nolan R. Wallach,*Harmonic analysis on homogeneous spaces*, Marcel Dekker, Inc., New York, 1973. Pure and Applied Mathematics, No. 19. MR**0498996****[11]**E. T. Whittaker and G. N. Watson,*A course of modern analysis*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR**1424469**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
22E45,
17B10,
20G05

Retrieve articles in all journals with MSC: 22E45, 17B10, 20G05

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1979-0531967-2

Keywords:
Representations,
semisimple Lie algebra,
semisimple Lie group,
irreducibility,
unitarizability,
holomorphic discrete series,
highest weight

Article copyright:
© Copyright 1979
American Mathematical Society