Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The analytic continuation of the discrete series. I


Author: Nolan R. Wallach
Journal: Trans. Amer. Math. Soc. 251 (1979), 1-17
MSC: Primary 22E45; Secondary 17B10, 20G05
DOI: https://doi.org/10.1090/S0002-9947-1979-0531967-2
MathSciNet review: 531967
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper the analytic continuation of the holomorphic discrete series is defined. The most elementary properties of these representations are developed. The study of when these representations are unitary is begun.


References [Enhancements On Off] (What's this?)

  • [1] Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185-243. MR 15, 100. MR 0056610 (15:100f)
  • [2] -, Representations of semisimple Lie groups. IV, Amer. J. Math. 77 (1955), 743-777. MR 17, 282. MR 0072427 (17:282c)
  • [3] -, Representations of semisimple Lie groups. VI, Amer. J. Math. 78 (1956), 564-628. MR 18, 490. MR 0082056 (18:490d)
  • [4] -, Discrete series for semisimple Lie groups. II, Acta Math. 116 (1966), 1-111. MR 36 #2745. MR 0219666 (36:2745)
  • [5] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962. MR 26 #2986. MR 0145455 (26:2986)
  • [6] A. W. Knapp and K. Okamoto, Limits of holomorphic discrete series, J. Functional Analysis 9 (1972), 375-409. MR 45 #8774. MR 0299726 (45:8774)
  • [7] S. Murakami, Cohomology groups of vector valued forms on symmetric spaces, Lecture notes, Univ. of Chicago, Summer 1966.
  • [8] P. J. Sally, Jr., Analytic continuation of the irreducible unitary representations of the universal covering group of $ SL(2,\,R)$, Mem. Amer. Math. Soc., No. 69, 1967. MR 38 #3380. MR 0235068 (38:3380)
  • [9] I. Satake, Factors of automorphy and Fock representations, Advances in Math. 7 (1971), 83-110. MR 50 #541. MR 0348043 (50:541)
  • [10] N. Wallach, Harmonic analysis on homogeneous spaces, Dekker, New York, 1973. MR 0498996 (58:16978)
  • [11] E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Univ. Press, New York, 1927. MR 1424469 (97k:01072)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E45, 17B10, 20G05

Retrieve articles in all journals with MSC: 22E45, 17B10, 20G05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1979-0531967-2
Keywords: Representations, semisimple Lie algebra, semisimple Lie group, irreducibility, unitarizability, holomorphic discrete series, highest weight
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society