Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Uniformly continuous functionals on the Fourier algebra of any locally compact group


Author: Anthony To Ming Lau
Journal: Trans. Amer. Math. Soc. 251 (1979), 39-59
MSC: Primary 43A60; Secondary 22D25
DOI: https://doi.org/10.1090/S0002-9947-1979-0531968-4
MathSciNet review: 531968
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let G be any locally compact group. Let $ VN\,(G)$ be the von Neumann algebra generated by the left regular representation of G. We study in this paper the closed subspace $ UBC\mathop {(G)}\limits^ \wedge $ of $ VN\, (G)$ consisting of the uniformly continuous functionals as defined by E. Granirer. When G is abelian, $ UBC\mathop {(G)}\limits^ \wedge $ is precisely the bounded uniformly continuous functions on the dual group Ĝ. We prove among other things that if G is amenable, then the Banach algebra $ UBC\mathop {(G)}\limits^ \wedge {\ast}$ (with the Arens product) contains a copy of the Fourier-Stieltjes algebra in its centre. Furthermore, $ UBC\mathop {(G)}\limits^ \wedge {\ast}$ is commutative if and only if G is discrete. We characterize $ W\mathop {(G)}\limits^ \wedge $, the weakly almost periodic functionals, as the largest subspace X of $ VN\, (G)$ for which the Arens product makes sense on $ {X^ {\ast} }$ and $ {X^ {\ast} }$ is commutative. We also show that if G is amenable, then for certain subspaces Y of $ VN\, (G)$ which are invariant under the action of the Fourier algebra $ A\, (G)$, the algebra of bounded linear operators on Y commuting with the action of $ A\, (G)$ is isometric and algebra isomorphic to $ {X^ {\ast} }$ for some $ X \subseteq UBC(\mathop {G)}\limits^ \wedge $.


References [Enhancements On Off] (What's this?)

  • [1] R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848. MR 13,659. MR 0045941 (13:659f)
  • [2] C. A. Akemann, Some mapping properties of the group algebras of a compact group, Pacific J. Math. 22 (1967), 1-8. MR 35 #3458. MR 0212587 (35:3458)
  • [3] C. A. Akemann and M. E. Walter, Non-abelian Pontriagin duality, Duke Math. J. 39 (1972), 451-463. MR 47 #3595. MR 0315046 (47:3595)
  • [4] P. C. Curtis, Jr., and A. Figà-Talamanca, Factorization theorems for Banach algebras, Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965), Scott-Foresman, Chicago, I11., 1966, pp. 169-185. MR 34 #3350. MR 0203500 (34:3350)
  • [5] J. Dixmier, Les $ {C^ {\ast} }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars, Paris, 1964. MR 30 # 1404. MR 0171173 (30:1404)
  • [6] N. Dunford and J. T. Schwartz, Linear operators. I, Interscience, New York, 1958. MR 22 #8302.
  • [7] C. F. Dunkl and D. E. Ramirez, Weakly almost periodic functionals carried by hypercosets, Trans. Amer. Math. Soc. 164 (1972), 427-434. MR 45 #463. MR 0291370 (45:463)
  • [8] E. G. Effros, Order ideals in a $ {C^ {\ast} }$-algebra and its dual, Duke Math. J. 30 (1963), 391-411. MR 27 # 1847. MR 0151864 (27:1847)
  • [9] J. A. Ernest, A new group algebra for locally compact groups. I, Amer. J. Math. 86 (1964), 467-492. MR 29 #4838. MR 0167566 (29:4838)
  • [10] P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236. MR 37 #4208. MR 0228628 (37:4208)
  • [11] G. I. Gaudry, Quasimeasures and multiplier problems, Doctoral dissertation, Australian National Univ., 1966, Canberra, Australia.
  • [12] E. E. Granirer, Weakly almost periodic and uniformly continuous functionals on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc. 189 (1974), 371-382. MR 49 #1017. MR 0336241 (49:1017)
  • [13] F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Math. Studies, no. 16, Van Nostrand, Reinhold, New York, 1969. MR 40 #4776. MR 0251549 (40:4776)
  • [14] E. Hewitt and K. Ross, Abstract harmonic analysis. I, Springer-Verlag, Berlin; Academic Press, New York, 1963. MR 28 # 158.
  • [15] -, Abstract harmonic analysis. II, Springer-Verlag, Berlin and New York, 1970. MR 41 #7378; erratum, MR 42, p. 1825.
  • [16] G. A. Hively, The representation of norm-continuous multipliers on $ {L^\infty }$-spaces, Trans. Amer. Math. Soc. 184 (1973), 343-353. MR 49 #11150. MR 0346425 (49:11150)
  • [17] J. L. Kelley and Isaac Namioka, Linear topological spaces, Van Nostrand, Princeton, N.J., 1963. MR 29 #3851. MR 0166578 (29:3851)
  • [18] J. W. Kitchen, Jr., The almost periodic measures on a compact abelian group, Monatsh. Math. 72 (1968), 217-219. MR 37 #5614. MR 0230049 (37:5614)
  • [19] A. T. Lau, Operators which commute with convolutions on subspaces of $ {L_\infty }(G)$, Colloq. Math. (to appear).
  • [20] -, Closed convex invariant subsets of $ {L_P}(G)$, Trans. Amer. Math. Soc. 232 (1977), 131-142. MR 0477604 (57:17122)
  • [21] H. Leptin, Sur l'algèbre de Fourier d'un groupe localement compact, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A1180-A1182. MR 39 #362. MR 0239002 (39:362)
  • [22] L. H. Loomis, An introduction to abstract harmonic analysis, Van Nostrand, Princeton, N. J., 1953. MR 14, 883. MR 0054173 (14:883c)
  • [23] Kelly McKennon, Multipliers, positive functionals, positive-definite functions and Fourier-Stieltjes transforms, Mem. Amer. Math. Soc. no. 111 (1971). MR 0440299 (55:13174)
  • [24] D. A. Raĭkov, On various types of convergence of positive definite functions, Dokl. Akad. Nauk SSSR (N.S.) 58 (1947), 1279-1282. (Russian) MR 9, 328. MR 0023244 (9:328a)
  • [25] P. F. Renaud, Invariant means on a class of von Neumann algebras, Trans. Amer. Math. Soc. 170 (1972), 285-291. MR 0304553 (46:3688)
  • [26] S. Sakai, $ {C^{\ast}}$-algebras and $ {W^{\ast}}$-algebras, Springer-Verlag, Berlin and New York, 1971. MR 0442701 (56:1082)
  • [27] -, Weakly compact operators on operator algebras, Pacific J. Math. 14 (1964), 659-664. MR 29 #488. MR 0163185 (29:488)
  • [28] J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math. 2 (1952), 251-261. MR 14, 246. MR 0049911 (14:246c)
  • [29] James C. S. Wong, Topologically stationary locally compact groups and amenability, Trans. Amer. Math. Soc. 144 (1969), 351-363. MR 40 #2781. MR 0249536 (40:2781)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A60, 22D25

Retrieve articles in all journals with MSC: 43A60, 22D25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1979-0531968-4
Keywords: Locally compact group, amenable group, regular representation, Fourier algebra, Fourier-Stieltjes algebra, positive definite function, $ {C^ {\ast} }$-group algebra, almost periodic functionals, uniformly continuous functionals, multipliers, invariant mean, second conjugate algebra, Arens product
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society