Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Stable measures and central limit theorems in spaces of stable type


Authors: Michael B. Marcus and Wojbor A. Woyczyński
Journal: Trans. Amer. Math. Soc. 251 (1979), 71-102
MSC: Primary 60B12; Secondary 60E07
DOI: https://doi.org/10.1090/S0002-9947-1979-0531970-2
MathSciNet review: 531970
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let X be a symmetric random variable with values in a quasinormed linear space E. X satisfies the central limit theorem on E with index p, $ 0 \, < \, p \, \leqslant \, 2$, if $ \mathcal{L}{n^{ - 1/p}}({X_1} + \cdots + {{\text{X}}_n}))$ converges weakly to some probability measure on E. Hoffman-Jorgensen and Pisier have shown that Banach spaces of stable type 2 provide a natural environment for the central limit theorem with index $ p = 2$. In this paper we show that, for $ 0 < p < 2$, quasi-normed linear spaces of stable type p provide a natural environment for the central limit theorem with index p. A similar result holds also for the weak law of large numbers with index p.


References [Enhancements On Off] (What's this?)

  • [1] A. Beck, A convexity condition in Banach spaces and the strong law of large numbers, Proc. Amer. Math. Soc. 13 (1962), 329-334. MR 0133857 (24:A3681)
  • [2] J. Bretagnolle, D. Dacunha-Castelle and J. L. Krivine, Lois stables et espaces $ {L^p}$, Ann. Inst. H. Poincaré Sect. 2B (1966), 231-259. MR 0203757 (34:3605)
  • [3] I. Csiszar and B. S. Rajput, A convergence of types theorem for probability measures on topological vector spaces with application to stable laws, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 (1976), 1-7. MR 0420761 (54:8773)
  • [4] J. L. Doob, Stochastic processes, Wiley, New York, 1950. MR 1038526 (91d:60002)
  • [5] R. M. Dudley and M. Kanter, Zero-one laws for stable measures, Proc. Amer. Math. Soc. 45 (1974), 245-252. MR 0370675 (51:6901)
  • [6] B. V. Gnedenko, On the theory of domains of attraction of stable laws, Učen. Zap. Moskov. Gos. Univ. Mat. 30 (1939), 61-81. MR 0002042 (1:341d)
  • [7] J. Hoffmann-Jørgensen, Sums of independent Banach space valued random variables, Aarhus Universitet Preprint Series 15 (1972/73), 1-89.
  • [8] -, Sums of independent Banach space valued random variables, Studia Math. 52 (1974), 159-186. MR 0356155 (50:8626)
  • [9] J. Hoffmann-Jørgensen and G. Pisier, The law of large numbers and the central limit theorem in Banach spaces, Ann. Probability 4 (1976), 587-599. MR 0423451 (54:11429)
  • [10] N. C. Jain and M. B. Marcus, Integrability of infinite sums of independent vector-valued random variables, Trans. Amer. Math. Soc. 212 (1975), 1-36. MR 0385995 (52:6854)
  • [11] M. B. Marcus, Uniform convergence of random Fourier series, Ark. Mat. 13 (1975), 107-122. MR 0372994 (51:9196)
  • [12] J. P. Kahane, Some random series of functions, Heath, Lexington, Mass., 1968. MR 0254888 (40:8095)
  • [13] M. Klosowska, The domain of attraction of a non-gaussian stable distribution in a Hilbert space, Colloq. Math. 32 (1972), 127-136. MR 0365646 (51:1898)
  • [14] A. A. Kolmogorov, Bemerkungen zu meiner Arbeit ``Über die Summen zufälliger Grössen", Math. Ann. 102 (1929), 484-488.
  • [15] J. L. Krivine, Sous-espace de dimension finie des espaces de Banach réticulées, Ann. Math. 104 (1976), 1-29. MR 0407568 (53:11341)
  • [16] J. Kuelbs and V. Mandrekar, Harmonic analysis on certain vector spaces, Trans. Amer. Math. Soc. 149 (1970), 213-231. MR 0301162 (46:320)
  • [17] -, Domains of attraction of stable measures on a Hilbert space, Studia Math. 59 (1974), 149-162. MR 0345155 (49:9894)
  • [18] S. Kwapień, Sums of independent Banach space valued random variables (after J. Hoffmann-Jørgensen), Séminaire Maurey-Schwartz 1972/73, Exposé VI. MR 0436246 (55:9193)
  • [19] M. B. Marcus, Some new results on central limit theorems for $ C(S)$-valued random variables, Probability in Banach spaces, Lecture Notes in Math., vol. 526, Springer-Verlag, Berlin, 1976, pp. 167-186. MR 0451329 (56:9616)
  • [20] M. B. Marcus and W. A. Woyczynski, Domaines d'attraction normale dans l'espaces de type stable, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), 915-917. MR 0451330 (56:9617)
  • [21] B. Maurey, Espaces de cotype p, $ 0 < p \leqslant 2$, Séminaire Maurey-Schwartz 1972/73, Exposé VII.
  • [22] B. Maurey and G. Pisier, Séries de variables aléatoires vectorielles independantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), 45-90. MR 0443015 (56:1388)
  • [23] D. Mouchtari, Sur l'existence d'une topologie du type de Sazonov sur une espace de Banach, Séminaire Maurey-Schwartz 1975/76, Exposé XVII.
  • [24] V. V. Petrov, Sums of independent random variables, ``Nauka", Moscow, 1972. (Russian) MR 0322927 (48:1288)
  • [25] G. Pisier, Une propriété du type p-stable, Séminaire Maurey-Schwartz 1973/74, Exposé VIII. MR 0399811 (53:3653)
  • [26] -, Sur les espaces qui ne contiennent pas de $ l_n^1$ uniformement, C. R. Acad. Sci. Paris Sér. A-B 277 (1973), 991-994.
  • [27] E. J. G. Pitman, Some theorems on characteristic functions of probability distributions, Proc. Fourth Berkeley Symposium, vol. II, Univ. of California Press, Berkeley, 1961, pp. 393-402. MR 0132568 (24:A2408)
  • [28] E. L. Rvaceva, On domains of attraction of multidimensional distributions, Theory Probability and Math. Statist. 2 (1962), 183-205. MR 0150795 (27:782)
  • [29] A. Tortrat, Sur les lois $ e(\lambda )$ dans les espaces vectorielles, Applications aux lois stables, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 27 (1976), 175-182. MR 0428371 (55:1393)
  • [30] K. Urbanik and W. A. Woyczynski, Random integrals and Orlicz spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 161-169. MR 0215329 (35:6170)
  • [31] W. A. Woyczynski, Geometry and martingales in Banach spaces. I, Lecture Notes in Math., vol. 472, Springer-Verlag, Berlin, 1976, pp. 229-275; II, Probability on Banach spaces, Advances in Probability, vol. 4, Dekker, New York, 1978, pp. 267-517. MR 0394131 (52:14936)
  • [32] -, Weak convergence to a Gaussian measure of martingales in Banach spaces, Sympos. Math. 21 (1977), 319-331. MR 0482990 (58:3022)
  • [33] K. Yosida, Functional analysis, Springer-Verlag, New York, 1965.
  • [34] P. Billingsley, Convergence of probability measures, Wiley, New York, 1968. MR 0233396 (38:1718)
  • [35] S. Rolewicz, Metric linear spaces, PWN, Warsaw, 1972. MR 808176 (88i:46004b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60B12, 60E07

Retrieve articles in all journals with MSC: 60B12, 60E07


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1979-0531970-2
Keywords: Stable measures, domains of attraction, weak law of large numbers, random integral, quasi-normed space, space of stable type p
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society