Adjacent connected sums and torus actions
Author:
Dennis McGavran
Journal:
Trans. Amer. Math. Soc. 251 (1979), 235254
MSC:
Primary 57S25; Secondary 57N15, 57Q15, 57R05
MathSciNet review:
531977
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let M and N be closed, compact manifolds of dimension m and let X be a closed manifold of dimension with embeddings of into M and N. Suppose the interior of is removed from M and N and the resulting manifolds are attached via a homeomorphism . Let this homeomorphism be of the form where . The resulting manifold, written as , is called the adjacent connected sum of M and N along X. In this paper definitions and examples are given and the examples are then used to classify actions of the torus on closed, compact, connected, simply connected manifolds, .
 [1]
D.
Barden, Simply connected fivemanifolds, Ann. of Math. (2)
82 (1965), 365–385. MR 0184241
(32 #1714)
 [2]
Glen
E. Bredon, Introduction to compact transformation groups,
Academic Press, New York, 1972. Pure and Applied Mathematics, Vol. 46. MR 0413144
(54 #1265)
 [3]
Richard
Z. Goldstein and Lloyd
Lininger, A classification of 6manifolds with free 𝑆¹
actions, (Univ. Massachusetts, Amherst, Mass., 1971) Springer,
Berlin, 1972, pp. 316–323. Lecture Notes in Math., Vol. 298. MR 0362378
(50 #14820)
 [4]
André
Haefliger, Knotted (4𝑘1)spheres in 6𝑘space,
Ann. of Math. (2) 75 (1962), 452–466. MR 0145539
(26 #3070)
 [5]
J.
F. P. Hudson, Piecewise linear topology, University of Chicago
Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees,
W. A. Benjamin, Inc., New YorkAmsterdam, 1969. MR 0248844
(40 #2094)
 [6]
Soon
Kyu Kim, Dennis
McGavran, and Jingyal
Pak, Torus group actions on simply connected manifolds,
Pacific J. Math. 53 (1974), 435–444. MR 0368051
(51 #4293)
 [7]
Soon
Kyu Kim and Jingyal
Pak, Isotropy subgroups of torus 𝑇ⁿactions on
(𝑛+2)manifolds, Michigan Math. J. 20 (1973),
353–359. MR 0343304
(49 #8046)
 [8]
R. C. Kirby, Lectures on triangulations of manifolds (mimeographed), University of California at Los Angeles, 1969.
 [9]
Dennis
McGavran, 𝑇³actions on simply
connected 6manifolds. I, Trans. Amer. Math.
Soc. 220 (1976),
59–85. MR
0415649 (54 #3729), http://dx.doi.org/10.1090/S00029947197604156490
 [10]
Dennis
McGavran, 𝑇³actions on simply connected 6manifolds.
II, Indiana Univ. Math. J. 26 (1977), no. 1,
125–136. MR 0440583
(55 #13457)
 [11]
Dennis
McGavran, 𝑇ⁿactions on simply connected
(𝑛+2)manifolds, Pacific J. Math. 71 (1977),
no. 2, 487–497. MR 0461542
(57 #1527)
 [12]
John
W. Milnor and James
D. Stasheff, Characteristic classes, Princeton University
Press, Princeton, N. J., 1974. Annals of Mathematics Studies, No. 76. MR 0440554
(55 #13428)
 [13]
Peter
Orlik and Frank
Raymond, Actions of 𝑆𝑂(2) on 3manifolds,
Proc. Conf. on Transformation Groups (New Orleans, La., 1967) Springer,
New York, 1968, pp. 297–318. MR 0263112
(41 #7717)
 [14]
Peter
Orlik and Frank
Raymond, Actions of the torus on 4manifolds.
I, Trans. Amer. Math. Soc. 152 (1970), 531–559. MR 0268911
(42 #3808), http://dx.doi.org/10.1090/S00029947197002689113
 [15]
Jingyal
Pak, Actions of torus 𝑇ⁿ on (𝑛+1)manifolds
𝑀ⁿ⁺¹, Pacific J. Math. 44
(1973), 671–674. MR 0322892
(48 #1253)
 [16]
Frank
Raymond, Classification of the actions of the
circle on 3manifolds, Trans. Amer. Math.
Soc. 131 (1968),
51–78. MR
0219086 (36 #2169), http://dx.doi.org/10.1090/S00029947196802190869
 [17]
Edwin
H. Spanier, Algebraic topology, McGrawHill Book Co., New
York, 1966. MR
0210112 (35 #1007)
 [18]
C. T. C. Wall, Classification problems in differential topology. V: On certain 6manifolds, Invent. Math. 1 (1966), 355374.
 [1]
 D. Barden, Simply connected fivemanifolds, Ann. of Math. (2) 82 (1965), 365385. MR 0184241 (32:1714)
 [2]
 G. E. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972. MR 0413144 (54:1265)
 [3]
 R. Goldstein and L. Lininger, A classification of 6manifolds with free actions, Proc. of the Second Conf. on Compact Transformation Groups, Univ. of Mass., 1971, Part 1, SpringerVerlag, Berlin and New York, 1972, pp. 316323. MR 0362378 (50:14820)
 [4]
 A. Haefliger, Knotted spheres in 6kspace, Ann. of Math. (2) 75 (1962), 452466. MR 0145539 (26:3070)
 [5]
 J. F. P. Hudson, Piecewise linear topology, Benjamin, New York, 1969. MR 0248844 (40:2094)
 [6]
 S. Kim, D. McGavran and J. Pak, Torus group actions on simply connected manifolds, Pacific J. Math. 53 (1974), 435444. MR 0368051 (51:4293)
 [7]
 S. Kim and J. Pak, Isotropy subgroups of torus actions on manifolds , Michigan Math. J. 20 (1973), 353359. MR 0343304 (49:8046)
 [8]
 R. C. Kirby, Lectures on triangulations of manifolds (mimeographed), University of California at Los Angeles, 1969.
 [9]
 Dennis McGavran, actions on simply connected 6manifolds. I, Trans. Amer. Math. Soc. 220 (1976), 5985. MR 0415649 (54:3729)
 [10]
 , actions on simply connected 6manifolds. II, Indiana Univ. Math. J. 26 (1977), 125136. MR 0440583 (55:13457)
 [11]
 , actions on simply connected manifolds, Pacific J. Math. 71 (1977), 487497. MR 0461542 (57:1527)
 [12]
 J. Milnor and J. Stasheff, Characteristic classes, Ann. of Math. Studies, no. 76, Princeton Univ. Press, Princeton, N. J., 1974. MR 0440554 (55:13428)
 [13]
 P. Orlik and F. Raymond, Actions of on 3manifolds, Proc. Conf. on Transformation Groups, New Orleans, 1967, SpringerVerlag, Berlin and New York, 1968, pp. 297318. MR 0263112 (41:7717)
 [14]
 , Actions of the torus on 4manifolds. I, Trans. Amer. Math. Soc. 152 (1970), 531559. MR 0268911 (42:3808)
 [15]
 J. Pak, Actions of the torus on manifolds , Pacific J. Math. 44 (1973), 671674. MR 0322892 (48:1253)
 [16]
 F. Raymond, A classification of the actions of the circle on 3manifolds, Trans. Amer. Math. Soc. 131 (1968), 5178. MR 0219086 (36:2169)
 [17]
 E. H. Spanier, Algebraic topology, McGrawHill, New York, 1966. MR 0210112 (35:1007)
 [18]
 C. T. C. Wall, Classification problems in differential topology. V: On certain 6manifolds, Invent. Math. 1 (1966), 355374.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
57S25,
57N15,
57Q15,
57R05
Retrieve articles in all journals
with MSC:
57S25,
57N15,
57Q15,
57R05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197905319775
PII:
S 00029947(1979)05319775
Keywords:
Adjacent connected sums,
torus actions,
simply connected manifolds,
orbit space
Article copyright:
© Copyright 1979 American Mathematical Society
