Sweedler's twococycles and generalizations of theorems on Amitsur cohomology
Author:
Dave Riffelmacher
Journal:
Trans. Amer. Math. Soc. 251 (1979), 255265
MSC:
Primary 16A62
MathSciNet review:
531978
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: For any (not necessarily commutative) algebra C over a commutative ring k Sweedler defined a cohomology set, denoted here by , which generalizes Amitsur's second cohomology group . In this paper, if I is a nilpotent ideal of C and is Kprojective, a natural bijection is established. Also, when are fields and C is a commutative Balgebra, the sequence is shown to be exact if the natural map induces a surjection on units, is induced by the inclusion, and r is the ``restriction'' map.
 [1]
S.
A. Amitsur, Simple algebras and cohomology groups
of arbitrary fields, Trans. Amer. Math.
Soc. 90 (1959),
73–112. MR
0101265 (21 #78), http://dx.doi.org/10.1090/S00029947195901012657
 [2]
Astrid
J. Berkson, On Amitsur’s complex and
restricted Lie algebras, Trans. Amer. Math.
Soc. 109 (1963),
430–443. MR 0158916
(28 #2138), http://dx.doi.org/10.1090/S00029947196301589161
 [3]
Henri
Cartan and Samuel
Eilenberg, Homological algebra, Princeton University Press,
Princeton, N. J., 1956. MR 0077480
(17,1040e)
 [4]
G.
Hochschild, On the cohomology groups of an associative
algebra, Ann. of Math. (2) 46 (1945), 58–67. MR 0011076
(6,114f)
 [5]
Dave
Riffelmacher, Multiplication alteration and related rigidity
properties of algebras, Pacific J. Math. 71 (1977),
no. 1, 139–157. MR 0485954
(58 #5746)
 [6]
Alex
Rosenberg and Daniel
Zelinsky, Amitsur’s complex for inseparable fields,
Osaka Math. J. 14 (1962), 219–240. MR 0142604
(26 #173)
 [7]
Moss
E. Sweedler, Groups of simple algebras, Inst. Hautes
Études Sci. Publ. Math. 44 (1974), 79–189. MR 0364332
(51 #587)
 [8]
Moss
Eisenberg Sweedler, Multiplication alteration by twococycles,
Illinois J. Math. 15 (1971), 302–323. MR 0288150
(44 #5348)
 [9]
Moss
Eisenberg Sweedler, Purely inseparable algebras, J. Algebra
35 (1975), 342–355. MR 0379594
(52 #499)
 [10]
Shuen
Yuan, On the theory of 𝑝algebras and the Amitsur
cohomology groups for inseparable field extensions, J. Algebra
5 (1967), 280–304. MR 0228548
(37 #4128)
 [1]
 S. A. Amitsur, Simple algebras and cohomology groups of arbitrary fields, Trans. Amer. Math. Soc. 97 (1959), 73112. MR 0101265 (21:78)
 [2]
 A. J. Berkson, On Amitsur's complex and restricted Lie algebras, Trans. Amer. Math. Soc. 109 (1963), 430443. MR 0158916 (28:2138)
 [3]
 H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 0077480 (17:1040e)
 [4]
 G. Hochschild, On the cohomology groups of an associative algebra, Ann. of Math. (2) 46 (1945), 5867. MR 0011076 (6:114f)
 [5]
 D. Riffelmacher, Multiplication alteration and related rigidity properties of algebras, Pacific J. Math. 71 (1977), 139157. MR 0485954 (58:5746)
 [6]
 A. Rosenberg and D. Zelinsky, Amitsur's complex for inseparable fields, Osaka Math. J. 14 (1962), 219240. MR 0142604 (26:173)
 [7]
 M. Sweedler, Groups of simple algebras, Inst. Hautes Études Sci. Publ. Math. 44 (1975), 79189. MR 0364332 (51:587)
 [8]
 , Multiplication alteration by twococycles, Illinois J. Math. 15 (1971), 302323. MR 0288150 (44:5348)
 [9]
 , Purely inseparable algebras, J. Algebra 35 (1975), 342355. MR 0379594 (52:499)
 [10]
 S. Yuan, On the theory of palgebras and the Amitsur cohomology groups for inseparable field extensions, J. Algebra 5 (1967), 280304. MR 0228548 (37:4128)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
16A62
Retrieve articles in all journals
with MSC:
16A62
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197905319787
PII:
S 00029947(1979)05319787
Article copyright:
© Copyright 1979
American Mathematical Society
