Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The analytic continuation of the discrete series. II


Author: Nolan R. Wallach
Journal: Trans. Amer. Math. Soc. 251 (1979), 19-37
MSC: Primary 22E45; Secondary 17B10, 20G05
DOI: https://doi.org/10.1090/S0002-9947-79-99965-3
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This is the second in a series of papers on the analytic continuation of the holomorphic discrete series. In this paper necessary and sufficient conditions for unitarizability are given in the case of line bundles. The foundations for the vector valued case are begun.


References [Enhancements On Off] (What's this?)

  • [1] Harish-Chandra, Representations of semisimple Lie groups. IV, Amer. J. Math. 77 (1955), 743-777. MR 17, 282. MR 0072427 (17:282c)
  • [2] -, Representations of semisimple Lie groups. VI, Amer. J. Math. 78 (1956), 564-628. MR 18, 490. MR 0082056 (18:490d)
  • [3] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962. MR 26 #2986. MR 0145455 (26:2986)
  • [4] R. Hotta and N. R. Wallach, On Matsushima's formula for the Betti numbers of a locally symmetric space (to appear).
  • [5] C. C. Moore, Compactifications of symmetric spaces. II. The Cartan domains, Amer. J. Math. 86 (1964), 358-378. MR 28 #5147. MR 0161943 (28:5147)
  • [6] H. Rossi and M. Vergue, Analytic continuation of the holomorphic discrete series of a semi-simple Lie group (to appear).
  • [7] W. Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math. 9 (1969/70), 61-80. MR 41 #3806. MR 0259164 (41:3806)
  • [8] N. R. Wallach, The analytic continuation of the discrete series. I, Trans. Amer. Math. Soc.
  • [9] -, Harmonic analysis on homogeneous spaces, Dekker, New York, 1973. MR 0498996 (58:16978)
  • [10] -, Induced representations of Lie algebras. II, Proc. Amer. Math. Soc. 21 (1969), 161-166. MR 38 #5871. MR 0237590 (38:5871)
  • [11] -, On maximal subsystems of root systems, Canad. J. Math. 20 (1968), 555-574. MR 38 #1135. MR 0232812 (38:1135)
  • [12] N. Wiener, The Fourier integral and certain of its applications, Cambridge Univ. Press, Cambridge, 1933; reprint, Dover, New York, 1959. MR 20 #6634. MR 0100201 (20:6634)
  • [13] H. Weyl, The classical groups, Princeton Univ. Press, Princeton, N. J., 1946. (1939 ed., MR 1, 42.)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E45, 17B10, 20G05

Retrieve articles in all journals with MSC: 22E45, 17B10, 20G05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-79-99965-3
Keywords: Representation, semisimple Lie algebra, semisimple Lie group, irreducibility, unitarizability, holomorphic discrete series, highest weight
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society