Statically tame periodic homeomorphisms of compact connected -manifolds. I. Homeomorphisms conjugate to rotations of the -sphere

Author:
Edwin E. Moise

Journal:
Trans. Amer. Math. Soc. **252** (1979), 1-47

MSC:
Primary 57S17; Secondary 57Q15

MathSciNet review:
534109

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let *f* be a homeomorphism of the 3-sphere onto itself, of finite period *n*, and preserving orientation. Suppose that the fixed-point set *F* of *f* is a tame 1-sphere. It is shown that (1) the 3-sphere has a triangulation such that *F* forms a subcomplex of and *f* is simplicial relative to . Suppose also that *F* is unknotted. It then follows that (2) *f* is conjugate to a rotation.

**[B]***Topology Seminar, Wisconsin, 1965*, Edited by R. H. Bing and R. J. Bean. Annals of Mathematics Studies, No. 60, Princeton University Press, Princeton, N.J., 1966. MR**0202100****[B]**R. H. Bing,*An alternative proof that 3-manifolds can be triangulated*, Ann. of Math. (2)**69**(1959), 37–65. MR**0100841****[B]**R. H. Bing,*Inequivalent families of periodic homeomorphisms of 𝐸³*, Ann. of Math. (2)**80**(1964), 78–93. MR**0163308****[B]**Armand Borel,*Seminar on transformation groups*, With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960. MR**0116341****[B]**Glen E. Bredon,*Orientation in generalized manifolds and applications to the theory of transformation groups*, Michigan Math. J.**7**(1960), 35–64. MR**0116342****[E]**C. H. Edwards Jr.,*Concentricity in 3-manifolds*, Trans. Amer. Math. Soc.**113**(1964), 406–423. MR**0178459**, 10.1090/S0002-9947-1964-0178459-X**[FA]**Ralph H. Fox and Emil Artin,*Some wild cells and spheres in three-dimensional space*, Ann. of Math. (2)**49**(1948), 979–990. MR**0027512****[M]**Edwin Moise,*Periodic homeomorphisms of the 3-sphere*, Illinois J. Math.**6**(1962), 206–225. MR**0150768****[M]**Edwin E. Moise,*Affine structures in 3-manifolds. IV. Piecewise linear approximations of homeomorphisms*, Ann. of Math. (2)**55**(1952), 215–222. MR**0046644****[M]**Edwin E. Moise,*Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung*, Ann. of Math. (2)**56**(1952), 96–114. MR**0048805****[M]**Edwin E. Moise,*Affine structures in 3-manifolds. VIII. Invariance of the knot-types; local tame imbedding*, Ann. of Math. (2)**59**(1954), 159–170. MR**0061822****[MGT]**Edwin E. Moise,*Geometric topology in dimensions 2 and 3*, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, Vol. 47. MR**0488059****[P]**C. D. Papakyriakopoulos,*On solid tori*, Proc. London Math. Soc. (3)**7**(1957), 281–299. MR**0087944****[S]**P. A. Smith,*Transformations of finite period. II*, Ann. of Math. (2)**40**(1939), 690–711. MR**0000177****[S]**P. A. Smith,*Periodic transformations of 3-manifolds*, Illinois J. Math.**9**(1965), 343–348. MR**0175126****[St]**John Stallings,*On the loop theorem*, Ann. of Math. (2)**72**(1960), 12–19. MR**0121796**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
57S17,
57Q15

Retrieve articles in all journals with MSC: 57S17, 57Q15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1979-0534109-2

Keywords:
Periodic homeomorphism,
3-sphere,
fixed-point set

Article copyright:
© Copyright 1979
American Mathematical Society