Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Single-valued representation of set-valued mappings


Author: A. D. Ioffe
Journal: Trans. Amer. Math. Soc. 252 (1979), 133-145
MSC: Primary 28B20; Secondary 54C65
DOI: https://doi.org/10.1090/S0002-9947-1979-0534114-6
MathSciNet review: 534114
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the graph of a set-valued mapping satisfying typical conditions which guarantee the existence of measurable selections can be represented as the union of graphs of measurable single-valued mappings depending continuously on a parameter running through some Polish space.


References [Enhancements On Off] (What's this?)

  • [1] R. J. Aumann, Measurable utility and measurable choice theorem, La Décision (Actes Colloq. Internat, du Centre Nat. Recherche Sci., Aix-en-Provence, 1967), Editions du CRNS, Paris, 1969, pp. 15-26. MR 0261938 (41:6548)
  • [2] D. W. Bressler and M. Sion, The current theory of analytic sets, Canad. J. Math. 16 (1964), 207-230. MR 0163854 (29:1153)
  • [3] C. Castaing, Multi-applications mesurables, Rev. Informat. Recherche Opérationelle 1 (1967), 91-126. MR 0223527 (36:6575)
  • [4] C. Dellacherie et P.-A. Meyer, Probabilités et potentiel, Hermann, Paris, 1975. MR 0488194 (58:7757)
  • [5] J. Hoffmann-Jorgensen, The theory of analytic spaces, Various Publ. Ser. no. 10, Āarhus Univ., Denmark, 1970. MR 0409748 (53:13500)
  • [6] A. D. Ioffe, Representation theorems for multifunctions and analytic sets, Bull. Amer. Math. Soc. 84 (1978), 142-144. MR 0466472 (57:6351)
  • [7] K. Kuratowski, Topology, Vol. 1, Academic Press, New York, 1966. MR 0217751 (36:840)
  • [8] K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 397-403. MR 0188994 (32:6421)
  • [9] S. J. Leese, Multifunctions of Suslin type, Bull. Austral. Math. Soc. 11 (1974), 395-411. MR 0417365 (54:5418a)
  • [10] -, Measurable selections and uniformization of Suslin sets, Amer. J. Math. (to appear). MR 0507445 (58:22447)
  • [11] V. L. Levin, Measurable selections of set-valued mappings and projections of measurable sets, Funkcional. Anal, i Priložen. (to appear). MR 0423073 (54:11056)
  • [12] P. S. Novikov, On projections of certain B-sets, Dokl. Akad. Nauk SSSR 23 (1939), 863-866.
  • [13] V. A. Rokhlin, Selected topics from the metric theory of dynamical systems, Amer. Math. Soc. Transl. 49 (1966), 171-240.
  • [14] J. Saint-Pierre, Caractérisation oes $ \mathcal{f}$-sousliniens d'un produit et théorèmes de sections, Travaux du Sém. d'Analyse Convexe, exp. 8, vol. 7, 1977. MR 0486388 (58:6134)
  • [15] S. Simons, A proof that Souslin Souslin $ H\, \subset \,Souslin\,H$, Canad. Math. Bull. 9 (1966), 79-82. MR 0200164 (34:63)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28B20, 54C65

Retrieve articles in all journals with MSC: 28B20, 54C65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1979-0534114-6
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society