Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Toeplitz operators and related function algebras on certain pseudoconvex domains


Authors: Nicholas P. Jewell and Steven G. Krantz
Journal: Trans. Amer. Math. Soc. 252 (1979), 297-312
MSC: Primary 47B35; Secondary 32A35, 32F15, 46J15
DOI: https://doi.org/10.1090/S0002-9947-1979-0534123-7
MathSciNet review: 534123
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Toeplitz operators are defined on pseudoconvex domains in $ {{\textbf{C}}^n}$ and their spectral properties are studied. In addition, the linear space $ {H^\infty }\, + \,C$ is discussed and is seen to be a closed algebra on a variety of domains.


References [Enhancements On Off] (What's this?)

  • [1] A. Aytuna and A.-M. Chollet, Une extension d'un resultat de W. Rudin, Bull. Soc. Math. France 104 (1976), 383-388. MR 0430785 (55:3790)
  • [2] E. Bedford and J. E. Fornaess, Domains with pseudoconvex neighborhood systems, Invent. Math. 47 (1978), 1-27. MR 0499316 (58:17215)
  • [3] L. A. Coburn, Singular integral operators and Toeplitz operators on odd spheres, Indiana Univ. Math. J. 23 (1973), 433-439. MR 0322595 (48:957)
  • [4] B. Cole and R. M. Range, A-measures on complex manifolds and some applications, J. Functional Analysis 11 (1973), 393-400. MR 0340646 (49:5398)
  • [5] A. M. Davie and N. P. Jewell, Toeplitz operators in several complex variables, J. Functional Analysis 26 (1977), 356-368. MR 0461195 (57:1180)
  • [6] K. Diederich and J. E. Fornaess, A strange bounded domain of holomorphy, Bull. Amer. Math. Soc. 207 (1975), 219-240.
  • [7] R. M. Douglas, Banach algebra techniques in the theory of Toeplitz operators, CBMS Regional Conf. Ser. in Math. no. 15, Amer. Math. Soc., Providence, R.I., 1973. MR 0361894 (50:14336)
  • [8] -, Banach algebra techniques in operator theory, Academic Press, New York, 1972. MR 0361893 (50:14335)
  • [9] T. W. Gamelin, Rational approximation theory, Lecture notes, U.C.L.A., 1975.
  • [10] I. Graham, Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in $ {{\textbf{C}}^n}$, Trans. Amer. Math. Soc. 207 (1975), 219-240. MR 0372252 (51:8468)
  • [11] M. Hakim and N. Sibony, Quelques conditions pour l'existence de fonctions pics dans les domaines pseudoconvexes, Duke Math. J. 44 (1977), 399-406. MR 0457784 (56:15988)
  • [12] G. M. Henkin, Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications, Math. USSR Sb. 7 (1969), 597-616.
  • [13] L. Hörmander, An introduction to complex analysis in several complex variables, Van Nostrand, New York, 1966.
  • [14] J. Janas, Toeplitz operators related to certain domains in $ {{\textbf{C}}^n}$, Studia Math. 54 (1975), 73-79. MR 0390827 (52:11650)
  • [15] N. Kerzman, Hölder and $ {L^p}$ estimates for solutions to $ \overline \partial u\, = \,f$ in strongly pseudoconvex domains, Comm. Pure Appl. Math. 24 (1971), 301-379. MR 0281944 (43:7658)
  • [16] J. J. Kohn, Global regularity for $ \overline \partial $ on weakly pseudoconvex manifolds, Trans. Amer. Math. Soc. 181 (1973), 273-292. MR 0344703 (49:9442)
  • [17] -, Sufficient conditions for subellipticity on weakly pseudoconvex domains, Proc. Nat. Acad. Sci. U.S.A. 94 (1977), 2214-2216.
  • [18] G. McDonald, Fredholm properties of a class of Toeplitz operators on the ball, Indiana J. Math. 26 (1977), 567-576. MR 0482351 (58:2424)
  • [19] R. Narasimhan, Several complex variables, Univ. of Chicago Press, Chicago, I11., 1971. MR 0342725 (49:7470)
  • [20] J. von Neumann, On rings of operators, reduction theory, Ann. of Math. (2) 50 (1949), 401-485. MR 0029101 (10:548a)
  • [21] I. Raeburn, On Toeplitz operators associated with strongly pseudoconvex domains, Studia Math. 63 (1979), 253-258. MR 515494 (80a:47041)
  • [22] R. M. Range, The Carathéodory metric and holomorphic maps on a class of weakly pseudoconvex domains (preprint). MR 513293 (81j:32022)
  • [23] -, Hölder estimates for $ \overline \partial $ on convex domains in $ {{\textbf{C}}^2}$ with real analytic boundary, Proc. Sympos. Pure Math., vol. 30, Amer. Math. Soc., Providence, R.I., 1977, pp. 31-33.
  • [24] -, On Hölder estimates for $ \partial u\, = \,f$ on weakly pseudoconvex domains (preprint).
  • [25] R. M. Range and Y. T. Siu, Uniform estimates for the $ \overline \partial $ equation on domains with piecewise smooth strictly pseudoconvex boundaries, Math. Ann. 206 (1973), 325-354. MR 0338450 (49:3214)
  • [26] W. Rudin, Spaces of type $ {H^\infty }\, + \,C$, Ann. Inst. Fourier (Grenoble) 25 (1975), 99-125. MR 0377520 (51:13692)
  • [27] E. M. Stein, Boundary behavior of holomorphic functions of several complex variables, Princeton Univ. Press, Princeton, N.J., 1972. MR 0473215 (57:12890)
  • [28] E. L. Stout, $ {H^p}$ functions on strongly pseudoconvex domains, Amer. J. Math. 98 (1976), 821-852. MR 0422685 (54:10671)
  • [29] U. Venugopalkrishna, Fredholm operators associated with strongly pseudoconvex domains, J. Functional Analysis 9 (1972), 349-373. MR 0315502 (47:4051)
  • [30] K. Yabuta, A remark to a paper of Janas: Toeplitz operators related to certain domains in $ {{\textbf{C}}^n}$, Studia Math. 62 (1978), 73-74. MR 0477862 (57:17364)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47B35, 32A35, 32F15, 46J15

Retrieve articles in all journals with MSC: 47B35, 32A35, 32F15, 46J15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1979-0534123-7
Keywords: Toeplitz operators, function algebras, pseudoconvex domains
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society