Codimension one isometric immersions between Lorentz spaces

Author:
L. K. Graves

Journal:
Trans. Amer. Math. Soc. **252** (1979), 367-392

MSC:
Primary 53C50; Secondary 53C42

DOI:
https://doi.org/10.1090/S0002-9947-1979-0534127-4

MathSciNet review:
534127

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The theorem of Hartman and Nirenberg classifies codimension one isometric immersions between Euclidean spaces as cylinders over plane curves. Corresponding results are given here for Lorentz spaces, which are Euclidean spaces with one negative-definite direction (also known as Minkowski spaces). The pivotal result involves the completeness of the relative nullity foliation of such an immersion. When this foliation carries a nondegenerate metric, results analogous to the Hartman-Nirenberg theorem obtain. Otherwise, a new description, based on particular surfaces in the three-dimensional Lorentz space, is required.

**[A]**K. Abe,*Characterization of totally geodesic submanifolds in**and**by an inequality*, Tôhoku Math. J.**23**(1971), 219-244. MR**0295253 (45:4321)****[B]**W. Bonnor,*Null curves in a Minkowski space-time*, Tensor (N.S.)**20**(1969), 229-242. MR**0248658 (40:1909)****[F]**D. Ferus,*On the completeness of nullity foliations*, Michigan Math. J.**18**(1971), 61-64. MR**0279733 (43:5454)****[G]**W. Greub,*Linear algebra*, 2nd ed., Springer-Verlag, New York, 1963.**[HN]**P. Hartman and L. Nirenberg,*On spherical image maps whose Jacobians do not change sign*, Amer. J. Math.**81**(1959), 901-920. MR**0126812 (23:A4106)****[KN]**S. Kobayashi and K. Nomizu,*Foundations of differential geometry*. I, II, Interscience, New York, 1963, 1969. MR**0152974 (27:2945)****[M]**J. D. Moore,*Isometric immersions of Riemannian products*, J. Differential Geometry**5**(1971), 159-168. MR**0307128 (46:6249)****[N]**K. Nomizu,*On hypersurfaces satisfying a certain condition on the curvature tensor*, Tôhoku Math. J.**20**(1968), 46-59. MR**0226549 (37:2138)****[N]**-,*Lectures on differential geometry of submanifolds*(unpublished lecture notes), Brown University, 1975.**[S]**M. Spivak,*A comprehensive introduction to differential geometry*. II, III, Publish or Perish, Boston, Mass., 1970, 1975.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
53C50,
53C42

Retrieve articles in all journals with MSC: 53C50, 53C42

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1979-0534127-4

Keywords:
Lorentz spaces,
isometric immersions,
null curves,
null frames,
relative nullity foliation,
(non)degenerate relative nullities,
complete relative nullities,
Hartman-Niren-berg theorem,
cylinders over plane curves,
*B*-scrolls

Article copyright:
© Copyright 1979
American Mathematical Society