Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Compactifications of the generalized Jacobian variety


Authors: Tadao Oda and C. S. Seshadri
Journal: Trans. Amer. Math. Soc. 253 (1979), 1-90
MSC: Primary 14K30; Secondary 14D25
DOI: https://doi.org/10.1090/S0002-9947-1979-0536936-4
MathSciNet review: 536936
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The generalized Jacobian variety of an algebraic curve with at most ordinary double points is an extension of an abelian variety by an algebraic torus. Using the geometric invariant theory, we systematically compactify it in finitely many different ways and describe their structure in terms of torus embeddings. Our compactifications include all known good ones.


References [Enhancements On Off] (What's this?)

  • [1] M. Artin, Lectures on deformations of singularities, Tata Inst. of Fundamental Research, No 54, Bombay, 1976.
  • [2] C. Berge, Graphs and hypergraphs, North-Holland, Amsterdam, 1970. MR 809587 (87e:05050)
  • [3] P. R. Bryant, Graph theory applied to electrical networks, Graph Theory and Theoretical Physics (F. Harary, ed.), Academic Press, New York, 1967, pp. 111-137. MR 0233627 (38:1948)
  • [4] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Publ. Math. Inst. Hautes Etudes Sci. 36 (1969), 75-10. MR 0262240 (41:6850)
  • [5] P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptique, Modular Functions of One Variable. II, Lecture Notes in Math., vol. 349, Springer-Verlag, New York, 1973. MR 0337993 (49:2762)
  • [EGA] J. Dieudonné and A. Grothendieck, Éléments de géométrie algébrique, Publ. Math. Inst. Hautes Études Sci., Nos. 4, 8, 11, 17, 20, 24, 28, 32 (1960-1967).
  • [6] T. J. Dickson, On Voronoi reduction of positive definite quadratic forms, J. Number Theory 4 (1972), 330-341. MR 0319900 (47:8441)
  • [7] C. D'Souza, Compactification of generalized Jacobian, Thesis, TIFR and Bombay Univ. 1974; Astérisque (to appear).
  • [8] D. Gieseker, On the moduli of vector bundles on an algebraic surface, Ann. of Math. 106 (1977), 45-60. MR 466475 (81h:14014)
  • [9] -, Stable vector bundles on degenerating families of curves (to appear). FGA. A. Grothendieck, Fondements de la géométrie algébrique, Extraits du Séminaire Bourbaki 1957-1962, Paris, 1962.
  • [10] W. Haboush, Reductive groups are geometrically reductive, Ann. of Math. (2) 102 (1975), 67-83. MR 0382294 (52:3179)
  • [11] F. Harary, Graph theory, Addison-Wesley, Reading, Mass., 1969. MR 0256911 (41:1566)
  • [12] A. J. Hoffman and J. B. Kruskal, Integral boundary points of convex polyhedra, Linear Inequalities and Related Systems (Kuhn and Tucker, ed.), Ann. of Math. Studies, vol. 38, Princeton Univ. Press, Princeton, N. J., 1956, pp. 223-246. MR 0085148 (18:980b)
  • [13] I. Heller and C. B. Tompkins, An extension of a theorem of Dantzig's,Linear Inequalities and Related Systems, Ann. of Math. Studies, vol. 38, Princeton Univ. Press, Princeton, N.J., 1956, pp. 247-254. MR 0081871 (18:459f)
  • [14] J. Igusa, Fiber systems of Jacobian varieties. I, II, III, Amer. J. Math. 78 (1956), 177-199; 745-760; 81 (1959), 453-475. MR 0084849 (18:936a)
  • [15] S. C. Langton, Valuative criteria for families of vector bundles on algebraic varieties, Ann. of Math. (2) 101 (1975), 88-110. MR 0364255 (51:510)
  • [16] M. Maruyama, Stable vector bundles on an algebraic surface, Nagoya Math. J. 58 (1975), 25-68. MR 0396576 (53:439)
  • [17] K. Miyake and T. Oda, Almost homogeneous algebraic varieties under algebraic torus action, Manifolds Tokyo 1973, Univ. of Tokyo Press, Tokyo, 1974, pp. 373-381. See also: T. Oda, Lectures on torus embeddings and applications (Based on joint work with Katsuya Miyake), Tata Inst. of Fundamental Research, No. 58, Bombay, 1978. MR 0379501 (52:406)
  • [18] A. L. Mayer, Compactification of the variety of moduli of curves, Lectures 2 & 3, Seminar on degeneration of algebraic varieties (mimeographed notes), Inst. for Advanced Study, Princeton, N. J., 1969/70.
  • [19] D. Mumford, Further comments on boundary points (mimeographed notes), AMS Summer School at Woods Hole, 1964.
  • [20] -, Geometric invariant theory, Springer-Verlag, New York, 1965. MR 0214602 (35:5451)
  • [21] -, Abelian varieties, Oxford Univ. Press, Bombay, 1970.
  • [22] -, An analytic construction of degenerating abelian varieties over complete rings, Compositio Math. 24 (1972), 239-272. MR 0352106 (50:4593)
  • [23] -, Curves and their Jacobians, Univ. of Michigan Press, Ann Arbor, 1975. MR 0419430 (54:7451)
  • [24] D. Mumford et al., Toroidal embeddings. I, Lecture Notes in Math., vol. 339, Springer-Verlag, New York, 1973. MR 0335518 (49:299)
  • [25] D. Mumford and P. Newstead, Periods of a moduli space of bundles on curves, Amer. J. Math. 90 (1968), 1200-1208. MR 0234958 (38:3272)
  • [26] I. Nakamura, On moduli of stable quasi-abelian varieties, Nagoya Math. J. 58 (1975), 149-214. MR 0393049 (52:13860)
  • [27] Y. Namikawa, A new compactification of the Siegel space and degeneration of abelian varieties. I, II, Math. Ann. 221 (1976), 97-141, 201-241. MR 0480537 (58:697a)
  • [28] M. S. Narashiman and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. (2) 82 (1965), 540-567. MR 0184252 (32:1725)
  • [29] M. Raynaud, Spécialization du foncteur de Picard, Publ. Math. Inst. Hautes Études Sci. 38 (1970), 27-76. MR 0282993 (44:227)
  • [30] C. A. Rogers, Packings and coverings, Cambridge Tracts in Math. and Math. Phys., no 54, Cambridge Univ. Press, New York, 1964. MR 0172183 (30:2405)
  • [31] C. S. Seshadri, Space of unitary vector bundles on a compact Riemann surface, Ann. of Math. (2) 85 (1967), 303-336. MR 0233371 (38:1693)
  • [32] -, Mumford's conjecture for $ {\text{GL(2)}}$ and applications, (Internat. Colloq. TIFR, Bombay, 1968), Algebraic Geometry, Oxford Univ. Press, London, 1969, pp. 347-371.
  • [33] -, Theory of moduli, Algebraic Geometry-Arcata 1974, Proc. Sympos. Pure Math., vol. 29, Amer. Math. Soc., Providence, R. I., 1975, pp. 263-304. MR 0396565 (53:428)
  • [34] G. Voronoi, Nouvelles applications des paramétres continues et théorie des formes quadratiques. I, II-1, II-2, J. Reine Angew. Math. 133 (1908), 97-178; 134 (1908), 198-287; 136 (1909), 67-181.
  • [35] A. Ramanathan, Stable principal bundles on a compact Riemann surface-Construction of moduli space, Thesis, TIFR and Bombay Univ., 1976. MR 0369747 (51:5979)
  • [SGA] A. Grothendieck, Séminaire de géométrie algébrique, Inst. Hautes Études Sci., 1960/61.
  • [36] M. Ishida, Compactifications of a family of generalized Jacobian varieties, (Proc. Internat. Sympos. Algebraic Geometry, Kyoto, January, 1977, M. Nagata, ed.), Kinokuniya, Tokyo, 1978, pp. 503-524. MR 578869 (81h:14025)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 14K30, 14D25

Retrieve articles in all journals with MSC: 14K30, 14D25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1979-0536936-4
Keywords: Generalized Jacobian variety, line bundles, Picard scheme, stable curve, geometric invariant theory, torus embedding, Néron model, Delony decomposition, Voronoi decomposition, Namikawa decomposition, arrangement of hyperplanes, spanning tree, complexity of a graph, Kirchhoff-Trent's theorem, elementary cycle, elementary cocycle
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society