Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Differentiability of measures associated with parabolic equations on infinite-dimensional spaces


Author: M. Ann Piech
Journal: Trans. Amer. Math. Soc. 253 (1979), 191-209
MSC: Primary 28C20; Secondary 35R15, 58B10, 58D25, 58G32, 60J65
DOI: https://doi.org/10.1090/S0002-9947-1979-0536942-X
MathSciNet review: 536942
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The transition measures of the Brownian motion on manifolds modelled on abstract Wiener spaces locally correspond to fundamental solutions of certain infinite dimensional parabolic equations. We establish the existence of such fundamental solutions under a broad new set of hypotheses on the differential coefficients. The fundamental solutions can be approximated in total variation by fundamental solutions of ``almost'' finite dimensional parabolic equations. By the finite dimensional theory, the approximations are seen to be differentiable. We prove that the property of differentiability is closed under a particular type of sequential convergence, and conclude the differentiability of the fundamental solutions of the infinite dimensional parabolic equations. This result provides strong evidence in support of the conjecture that the transition measures of the Brownian motion are differentiable, and hence is of importance in the construction of infinite dimensional Laplace-Beltrami operators.


References [Enhancements On Off] (What's this?)

  • [1] V. I. Averbuh, O. G. Smoljanov and S. V. Fomin, Generalized functions and differential equations in linear spaces. I. Differential measures, Trans. Moscow Math. Soc. 24 (1971), 140-184. MR 0370184 (51:6413)
  • [2] -, Generalized functions and differential equations in linear spaces. II. Differential operators and their Fourier transforms, Trans. Moscow Math. Soc. 27 (1972), 255-270. MR 0370185 (51:6414)
  • [3] R. Bonic and J. Frampton, Smooth functions on Banach manifolds, J. Math, and Mech. 15 (1966), 866-898. MR 0198492 (33:6647)
  • [4] N. Dunford and J. T. Schwartz, Linear operators. Part I, Interscience, New York, 1957.
  • [5] C. M. Elson, An extension of Weyl's lemma to infinite dimensions, Trans. Amer. Math. Soc. 194 (1974), 301-324. MR 0343022 (49:7766)
  • [6] K. D. Etworthy, Gaussian measures on Banach spaces and manifolds, Proc. Summer Institute on Global Analysis, Trieste, 1972.
  • [7] P. Enflo, A counterexample to the approximation problem in Banach spaces, Acta Math. 130 (1973), 309-317. MR 0402468 (53:6288)
  • [8] X. Fernique, Intégrabilité des vecteurs Gaussions, C. R. Acad. Sci. Paris Ser. A 270 (1970), A1698-A1699. MR 0266263 (42:1170)
  • [9] T. Goldring, Decomposition theorems for differential forms on Hilbert spaces, Thesis, Yeshiva University (1977).
  • [10] L. Gross, Abstract Wiener spaces, Proc. Fifth Berkeley Sympos. on Mathematical Statistics and Probability, Vol. 2, Part I, Univ. California Press, Berkeley, Calif., 1967, pp. 31-42. MR 0212152 (35:3027)
  • [11] -, Potential theory on Hilbert space, J. Functional Analysis 1 (1967), 123-181. MR 0227747 (37:3331)
  • [12] A. M. Il'in, A. S. Kalashnikov and O. A. Oleinik, Linear equations of the second order of parabolic type, Russian Math. Surveys 17 (1962), 1-143.
  • [13] S. Ito, The fundamental solution of the parabolic equation in a differentiable manifold, Osaka Math. J. 5 (1953), 75-92. MR 0056178 (15:36c)
  • [14] H.-H. Kuo, Diffusion and Brownian motion on infinite-dimensional manifolds, Trans. Amer. Math. Soc. 169 (1972), 439-457. MR 0309206 (46:8316)
  • [15] -, Gaussian measures in Banach spaces, Lecture Notes in Math., vol. 463, SpringerVerlag, Berlin and New York, 1975. MR 0461643 (57:1628)
  • [16] -, Uhlenbeck-Ornstein process on a Riemann-Wiener manifold, Proceedings of a special session on vector measures, San Antonio, Texas, 1976 (to appear).
  • [17] M. A. Piech, A fundamental solution of the parabolic equation on Hilbert space, J. Functional Analysis 3 (1969), 85-114. MR 0251588 (40:4815)
  • [18] -, A fundamental solution of the parabolic equation on Hilbert space. II. The semigroup property, Trans. Amer. Math. Soc. 150 (1970), 257-286. MR 0278116 (43:3847)
  • [19] -, The exterior algebra for wiemann manifolds, J. Functional Analysis 28 (1978), 279-308. MR 0482800 (58:2851)
  • [20] R. Ramer, Integration on infinite-dimensional manifolds, Thesis, University of Amsterdam (1974).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28C20, 35R15, 58B10, 58D25, 58G32, 60J65

Retrieve articles in all journals with MSC: 28C20, 35R15, 58B10, 58D25, 58G32, 60J65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1979-0536942-X
Keywords: Abstract Wiener space, parabolic equations, Brownian motion, fundamental solutions, differentiable measures, Laplace-Beltrami operator
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society