Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Equivariant concordance of invariant knots
HTML articles powered by AMS MathViewer

by Neal W. Stoltzfus PDF
Trans. Amer. Math. Soc. 254 (1979), 1-45 Request permission

Abstract:

The classification of equivariant concordance classes of high-dimensional codimension two knots invariant under a cyclic action, T, of order m has previously been reported on by Cappell and Shaneson [CS2]. They give an algebraic solution in terms of their algebraic k-theoretic $\Gamma$-groups. This work gives an alternative description by generalizing the well-known Seifert linking forms of knot theory to the equivariant case. This allows explicit algorithmic computations by means of the procedures and invariants of algebraic number theory (see the subsequent work [St], particularly Theorem 6.13). Following Levine [L3], we define bilinear forms on the middle-dimensional homology of an equivariant Seifert surface ${B_i}(x,y) = L(x,{i_ + }(T_{\ast }^iy))$, for $i = 1, \cdots ,m$. Our first result (2.5) is that an invariant knot is equivariantly concordant to an invariant trivial knot if and only if there is a subspace of half the rank on which the ${B_i}$ vanish simultaneously. We then introduce the concepts of equivariant isometric structure and algebraic concordance which mirror the preceding geometric ideas. The resulting equivalence classes form a group under direct sum which has infinitely many elements of each of the possible orders (two, four and infinite), at least for odd periods. The central computation (3.4) gives an isomorphism of the equivariant concordance group with the subgroup of the algebraic knot concordance group whose Alexander polynomial, $\Delta$, satisfies the classical relation $\left | {\prod \nolimits _{i = 1}^m {\Delta \left ( {{\lambda ^i}} \right )} } \right | = 1$, where $\lambda$ is a primitive mth root of unity. This condition assures that the m-fold cover of the knot complement is also a homology circle, permitting the geometric realization of each equivariant isometric structure. Finally, we make an explicit computation of the Browder-Livesay desuspension invariant for knots invariant under an involution and also elucidate the connection of our methods with the results of [CS2] by explicitly describing a homomorphism from the group of equivariant isometric structures to the appropriate $\Gamma$-group.
References
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 57Q45
  • Retrieve articles in all journals with MSC: 57Q45
Additional Information
  • © Copyright 1979 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 254 (1979), 1-45
  • MSC: Primary 57Q45
  • DOI: https://doi.org/10.1090/S0002-9947-1979-0539906-5
  • MathSciNet review: 539906