Free states of the gauge invariant canonical anticommutation relations. II

Author:
B. M. Baker

Journal:
Trans. Amer. Math. Soc. **254** (1979), 135-155

MSC:
Primary 81D05; Secondary 46L10

MathSciNet review:
539911

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A class of representations of the gauge invariant subalgebra of the canonical anticommutation relations (henceforth GICAR) is studied. These representations are induced by restricting the well-known pure, nongauge invariant generalized free states of the canonical anticommutation relations (henceforth CAR). Denoting a state of the CAR by , and the unique generalized free state of the CAR such that and by , it is shown that a pure, nongauge invariant state induces a factor representation of the GICAR if and only if .

**[1]**Huzihiro Araki,*On quasifree states of 𝐶𝐴𝑅 and Bogoliubov automorphisms*, Publ. Res. Inst. Math. Sci.**6**(1970/71), 385–442. MR**0295702****[2]**B. M. Baker,*Free states of the gauge invariant canonical anticommutation relations*, Trans. Amer. Math. Soc.**237**(1978), 35–61. MR**479361**, 10.1090/S0002-9947-1978-0479361-6**[3]**E. Balslev, J. Manuceau, and A. Verbeure,*Representations of anticommutation relations and Bogolioubov transformations*, Comm. Math. Phys.**8**(1968), 315–326. MR**0253646****[4]**Ola Bratteli,*Inductive limits of finite dimensional 𝐶*-algebras*, Trans. Amer. Math. Soc.**171**(1972), 195–234. MR**0312282**, 10.1090/S0002-9947-1972-0312282-2**[5]**James G. Glimm,*On a certain class of operator algebras*, Trans. Amer. Math. Soc.**95**(1960), 318–340. MR**0112057**, 10.1090/S0002-9947-1960-0112057-5**[6]**R. Haag,*The mathematical structure of the Bardeen-Cooper- Schrieffer model.*, Nuovo Cimento (10)**25**(1962), 287–299 (English, with Italian summary). MR**0145921****[7]**R. T. Powers, Thesis, Princeton University, Princeton, N. J., 1967.**[8]**Robert T. Powers,*Representations of uniformly hyperfinite algebras and their associated von Neumann rings*, Ann. of Math. (2)**86**(1967), 138–171. MR**0218905****[9]**Robert T. Powers and Erling Størmer,*Free states of the canonical anticommutation relations*, Comm. Math. Phys.**16**(1970), 1–33. MR**0269230****[10]**G. Stamatopoulos, Thesis, University of Pennsylvania, Philadelphia, Pa., 1974.**[11]**A. van Daele and A. Verbeure,*Unitary equivalence of Fock representations on the Weyl algebra*, Comm. Math. Phys.**20**(1971), 268–278. MR**0286406**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
81D05,
46L10

Retrieve articles in all journals with MSC: 81D05, 46L10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1979-0539911-9

Keywords:
Anticommutation relations,
gauge invariance,
approximately finite -algebra,
generalized free states factor representations

Article copyright:
© Copyright 1979
American Mathematical Society