ANALYTIC EXTENSIONS AND SELECTIONS

BY

J. GLOBEVIČNIK

Abstract. Let G be a closed subset of the closed unit disc in C, let F be a closed subset of the unit circle of measure 0 and let Φ map G into the class of all open subsets of a complex Banach space X. Under suitable additional assumptions on Φ we prove that given any continuous function $f: F \to X$ satisfying $f(z) \in \text{closure}(\Phi(z))$ ($z \in F \cap G$) there exists a continuous function f from the closed unit disc into X, analytic in the open unit disc, which extends f and satisfies $f(z) \in \Phi(z)$ ($z \in G - F$). This enables us to generalize and sharpen known dominated extension theorems for the disc algebra.

Let p be a real valued positive continuous function on the unit circle T in C and let $F \subset T$ be a closed set of Lebesgue measure zero. Given any continuous function $f: F \to C$ satisfying $|f(s)| < p(s)$ ($s \in F$) there exists a function \tilde{f} in the disc algebra which extends f and satisfies $|\tilde{f}(t)| < p(t)$ ($t \in T$). This simple dominated extension theorem is a special case of a more general theorem proved by E. Bishop [1]. See [1]-[3], [6], [7], [10] for such theorems in general spaces of continuous functions and see [7] for the most general dominated extension theorem in the disc algebra.

Writing $\Phi(t) = \{z \in C: |z| < p(t)\}$ ($t \in T$) the above theorem becomes a selection theorem: Given any continuous function $f: F \to C$ satisfying $f(s) \in \Phi(s)$ ($s \in F$) there exists a function \tilde{f} in the disc algebra which extends f and satisfies $\tilde{f}(t) \in \Phi(t)$ ($t \in T$).

In the present paper we use some ideas of [5] to prove a selection theorem for the disc algebra which generalizes and sharpens known results on dominated extensions.

Throughout, we denote by Δ, $\overline{\Delta}$ and $\partial\Delta$ the open unit disc in C, its closure and its boundary, respectively. If X is a complex Banach space and $r > 0$ we write $\mathcal{B}_r(X) = \{x \in X: \|x\| < r\}$. Let $x \in X$ and $S, T \subset X$. We write $x + S = \{x + u: u \in S\}$ and $S + T = \{u + v: u \in S, v \in T\}$ and denote by \overline{S} the closure of S. By $A(\Delta, X)$ we denote the Banach space of all continuous functions from Δ to X which are analytic on Δ and by A we denote the disc algebra $A(\Delta, C)$. We write $I = \{t: 0 < t < 1\}$ and denote the set of all positive integers by N.

Received by the editors April 20, 1978 and, in revised form, September 20, 1978.

This work was supported in part by the Boris Kidrič Fund, Ljubljana, Yugoslavia.

© 1979 American Mathematical Society

0002-9947/79/0000-0457/$02.75

171
Suppose that \(\{ p_\alpha; \alpha \in \mathcal{A} \} \) is a family of nonempty open subsets of \(X \). For each \(\alpha \in \mathcal{A} \) let \(x_\alpha \in \overline{p_\alpha} \). We say that the sets \(p_\alpha \) (\(\alpha \in \mathcal{A} \)) are equi-locally connected at the points \(x_\alpha \) if given any \(\epsilon > 0 \) there is some \(\delta > 0 \) such that for every \(\alpha \in \mathcal{A} \), the set \((x_\alpha + B_\delta(X)) \cap p_\alpha \) is contained in a connected component of \((x_\alpha + B_\epsilon(X)) \cap p_\alpha \) [9]. We call any such \(\delta(\cdot) \) a modulus of equi-local connectedness of the sets \(p_\alpha \) (\(\alpha \in \mathcal{A} \)) at the points \(x_\alpha \).

Let \(S \subset \overline{\Delta} \) be a closed set and let \(X \) be a Banach space. We call the graph of a map \(\Phi: S \to 2^X \) the set of all pairs \((z, x) \in S \times X \) such that \(x \in \Phi(z) \). We say that \(\Phi \) is open if its graph is open in \(S \times X \); equivalently, \(\Phi \) is open if given any \(z \in S \) and any \(x \in \Phi(z) \) there is some \(\epsilon > 0 \) such that \(x + B_\epsilon(X) \subset \Phi(u) \) (\(u \in S; |u - z| < \epsilon \)). In particular, if \(\Phi \) is open then \(\Phi(z) \) is open for every \(z \in S \).

Our main result is the following:

Theorem. Let \(X \) be a complex Banach space and let \(G \subset \overline{\Delta} \) be a closed set. Assume that \(\Phi: G \to 2^X \) is an open map such that \(g(z) \in \Phi(z) \) (\(z \in G \)) for some \(g \in A(\Delta, X) \). Let \(F \subset \partial \Delta \) be a closed set of measure 0 and let \(f: F \to X \) be a continuous function such that \(f(s) \in \Phi(s) \) (\(s \in G \cap F \)). Assume that \(\Phi(s) \) is connected for each \(s \in G \cap F \) and that the sets \(\Phi(s) \) (\(s \in G \cap F \)) are equi-locally connected at the points \(f(s) \). Then there exists an extension \(\tilde{f} \in A(\Delta, X) \) of \(f \) which satisfies \(\tilde{f}(z) \in \Phi(z) \) (\(z \in G - F \)).

Lemma. Under the assumptions of the theorem with \(G = \overline{\Delta} \), let \(U \subset \overline{\Delta} \) be a neighbourhood of \(F \) and let \(\epsilon > 0 \). Suppose that \(F = \bigcup_{i=1}^{m} F_i \) where the \(F_i \) (\(1 \leq i \leq m \)) are pairwise disjoint nonempty closed sets. Assume that \(u, v: F \to X \) are two functions such that \(v(s) \in \Phi(s) \) (\(s \in F \)) and such that \(u|F_i \) and \(v|F_i \) are constant for each \(i \) (\(1 < i < m \)). Suppose that there is some \(\tilde{u} \in A(\Delta, X) \) which extends \(u \) and satisfies \(\tilde{u}(z) \in \Phi(z) \) (\(z \in \overline{\Delta} \)). Then there is an extension \(\tilde{v} \in A(\Delta, X) \) of \(v \) which satisfies \(\tilde{v}(z) \in \Phi(z) \) (\(z \in \overline{\Delta} \)) and \(\| \tilde{u}(z) - \tilde{v}(z) \| < \epsilon \) (\(z \in \overline{\Delta} - U \)). If, in addition, \(R > 0 \) and

\[
\| u(s) - f(s) \| < \delta(R), \quad \| v(s) - f(s) \| < \delta(R) \quad (s \in F)
\]

where \(\delta(\cdot) \) is a modulus of equi-local connectedness of the sets \(\Phi(s) \) (\(s \in F \)) at the points \(f(s) \) then one may choose \(\tilde{v} \) so that \(\| \tilde{u} - \tilde{v} \| < 4R \).

Proof. We prove both assertions; the proof can be easily adapted to prove only the first assertion.

Observe first that by compactness of \(\overline{\Delta} \), by the continuity of \(\tilde{u} \) and by the fact that \(\Phi \) is open there is some \(\eta > 0 \) such that \(\tilde{u}(z) + B_\eta(X) \subset \Phi(z) \) (\(z \in \overline{\Delta} \)). For the moment, fix \(s \in F \). The assumptions imply that there is a path \(p: I \to \Phi(s) \) such that \(p(0) = u(s), p(1) = v(s) \) and \(\| p(t) - f(s) \| < R \) (\(t \in I \)). Since \(\Phi \) is open and since \(p(I) \) is compact there is some \(r' > 0 \) such that \(p(I) + B_r(X) \subset \Phi(z) \) (\(z \in \Delta, |z - s| < r' \)).
Since \(u \) and \(v \) are constant on \(F_i \) for \(1 < i < m \) there are paths \(p_i: I \to X \) \((1 < i < m)\) and an \(r > 0 \) such that
\[
p_i(0) = u(s), \quad p_i(1) = v(s) \quad (s \in F_i, \ 1 < i < m),
\]
\[
p_i(I) + B_r(X) \subset \Phi(z) \quad (z \in \bar{A}, \ \text{dist}(z, F_i) < r, \ 1 < i < m),
\]
\[
\text{diam} \ p_i(I) < 2R \quad (1 < i < m),
\]
and \(r < \min\{\epsilon, R, \eta\} \). By the continuity of \(\tilde{u} \) we may choose pairwise disjoint neighbourhoods \(U_i \subset U \) of \(F_i \), respectively, such that
\[
p_i(I) + B_r(U_i) \subset \Phi(z), \quad ||\tilde{u}(z) - p_i(0)|| < r \quad (z \in U_i, \ 1 < i < m).
\]
By [4, Lemma 4] there exists for each \(i \) \((1 < i < m)\) an \(h_i \in A(\Delta, X) \) such that
\[
h_i|F_i = (v - u)|F_i \quad (1 < i < m),
\]
\[
h_i|F_j = 0 \quad (1 < j < m, j \neq i),
\]
\[
h_i(\bar{A}) \subset -p_i(0) + p_i(I) + B_r(U_i) \quad (1 < i < m)
\]
\[
||h_i(z)|| < r/m \quad (z \in \bar{A} - U_i, \ 1 < i < m).
\]
Put \(\tilde{\delta} = \tilde{u} + \sum_{i=1}^n h_i \). As in [5, p. 375] it is easy to see that \(\tilde{\delta} \) has all the required properties. Q.E.D.

PROOF OF THE THEOREM. It suffices to prove the Theorem in the case when \(G = A \) (otherwise define \(\Psi(z) = \Phi(z) \) \((z \in G)\), \(\Psi(z) = X \) \((z \in \bar{A} - G)\), observe that \(\Psi \) is an open map and apply the theorem to \(\Psi \)). Further, it suffices to prove the Theorem in the special case when \(g = 0 \) (otherwise define \(\Psi(z) = -g(z) + \Phi(z) \) \((z \in G)\), observe that, by the continuity of \(g \), \(\Psi \) is open, apply the theorem to \(\Psi \) and to the function \(s \to h(s) = -g(s) + f(s) \) and finally put \(\tilde{f} = g + \tilde{h} \)). So assume that \(G = \bar{A} \) and \(g = 0 \).

Let \(\delta(\cdot) \) be a modulus of equi-local connectedness of \(\Phi(s) \) \((s \in F)\) at the points \(f(s) \) and let \(\delta_n \) be a decreasing sequence of positive numbers converging to 0 and satisfying \(\delta_n < \delta\left(\frac{1}{4}, 2^{-n}\right) \) \((n \in N)\). As in the proof of Lemma 5, [5, pp. 371–372] it follows from our assumptions that for each \(n \) there is a decomposition \(F = \bigcup_{i=1}^n F_i \) where the \(F_i \) are pairwise disjoint nonempty compact sets, and a function \(f_n: F \to X \) such that \(f_n|F_i \) is constant for each \(i \) \((1 < i < m)\) and such that
\[
(a) \ f_n(s) \in \Phi(s) \quad (s \in F, \ n \in N),
\]
\[
(b) \ ||f_n(s) - f(s)|| < \delta_n \quad (s \in F, \ n \in N).
\]
We may assume that for all \(n \), each element of \((n + 1)\)st decomposition is contained in an element of \(n \)th decomposition. Since \(\Phi \) is open, \(0 \in \Phi(z) \) for all \(z \in \bar{A} \), and since \(\bar{A} \) is compact there is some \(\epsilon_0 > 0 \) such that \(B_{\epsilon_0}(X) \subset \Phi(z) \) \((z \in \bar{A})\). Let \(U_n \subset \bar{A} \) be a decreasing sequence of neighbourhoods of \(F \)
such that \(F = \cap_{n=1}^{\infty} U_n \). Assume that there exist a decreasing sequence \(\varepsilon_n \) of positive numbers satisfying \(\varepsilon_n < \varepsilon_0 \) (\(n \in N \)) and a sequence \(g_n \in A(\Delta, X) \), \(g_0 = 0 \), with the following properties:

1. \(g_n|F = f_n|F \) (\(n \in N \)),
2. \(\| g_n - g_{n-1} \| < 1/2^{n-1} \) (\(n \in N, n > 2 \)),
3. \(\| g_n(z) - g_{n-1}(z) \| < \varepsilon_n/2^m (z \in \Delta - U_n, n \in N) \),
4. \(g_n(z) + B_1(X) \subset \Phi(z) \) (\(z \in \Delta, n \in N \)).

By (ii), \(g_n \) converge uniformly on \(\Delta \) so putting \(\tilde{f}(z) = \lim_{n \to \infty} g_n(z) \) (\(z \in \Delta \)) we have \(\tilde{f} \in A(\Delta, X) \). By (i) and (b) \(\tilde{f}|F = f \). Further, let \(z \in \Delta - U_1 \). Writing \(\tilde{f}(z) = \sum_{n=0}^{\infty} (g_{n+1}(z) - g_n(z)) \) it follows by (iii) that \(\tilde{f}(z) \in B_1(X) \subset \Phi(z) \).

Finally, if \(z \in U_1 - F \) then for some \(n \in N \) we have \(z \notin U_j \) (\(j > n \)) so by (iii) and (iv) it follows that

\[
\tilde{f}(z) = g_n(z) + \sum_{j=n}^{\infty} [g_{j+1}(z) - g_j(z)] \in g_n(z) + B_1(X) \subset \Phi(z)
\]

and consequently \(\tilde{f} \) has all the required properties.

It remains to prove the existence of \(\varepsilon_n \) and \(g_n \) with the above properties. Put \(g_0 = 0 \). By the first part of the Lemma there is some \(g_1 \in A(\Delta, X) \) satisfying \(g_1(z) \in \Phi(z) \) (\(z \in \Delta \)) and such that (i) and (iii) hold for \(n = 1 \). Since \(\Phi \) is open, \(g_1(z) \in \Phi(z) \) for all \(z \in \Delta \) and since \(\Delta \) is compact there is some \(\varepsilon_1 \) with \(0 < \varepsilon_1 < \varepsilon_0 \) such that \(g_1(z) + B_{\varepsilon_1}(X) \subset \Phi(z) \) (\(z \in \Delta \)). Let \(m \in N \) and assume that \(g_m \in A(\Delta, X) \) satisfies (i) and (iv) for some \(\varepsilon_m > 0 \). By the Lemma (a) and (b) imply that there is some \(g_{m+1} \in A(\Delta, X) \) satisfying (i)–(iii) for \(n = m + 1 \) and such that \(g_{m+1}(z) \in \Phi(z) \) (\(z \in \Delta \)). Again, since \(\Phi \) is open, \(g_{m+1}(z) \in \Phi(z) \) (\(z \in \Delta \)) and since \(\Delta \) is compact there is some \(\varepsilon_{m+1} \) with \(0 < \varepsilon_{m+1} < \varepsilon_m \) such that \(g_{m+1}(z) + B_{\varepsilon_{m+1}}(X) \subset \Phi(z) \) (\(z \in \Delta \)). Q.E.D.

Next we present some simple applications. In Corollaries 1–6 below \(G \) can be either \(\Delta \) or \(\partial \Delta \).

Corollary 1. Let \(X \) be a complex Banach space and let \(p: G \to (0, \infty) \) be a lower semicontinuous function. Given any closed set \(F \subset \partial \Delta \) of measure 0 and any continuous function \(f: F \to X \) satisfying \(\| f(s) \| < p(s) \) (\(s \in F \)) there exists \(\tilde{f} \in A(\Delta, X) \) which extends \(f \) and satisfies \(\| \tilde{f}(z) \| < p(z) \) (\(z \in G - F \)). Moreover, if \(z_j \in \Delta \) (\(1 < j < k \)) and if \(n_j \) (\(1 < j < k \)) are positive integers, \(\tilde{f} \) can be chosen to have a zero at \(z_j \) of order at least \(n_j \).

Proof. Since \(p \) is lower semicontinuous the map \(z \to \Phi(z) = \{ x \in X: \| x \| < p(z) \} \) is open on \(G \). Further, since \(p \) is lower semicontinuous there is some \(\delta > 0 \) such that \(p(z) > \delta \) (\(z \in G \)). Consequently \(g \in A(\Delta, X) \) defined by \(g(z) = 0 \) (\(z \in \Delta \)) satisfies \(g(z) \in \Phi(z) \) (\(z \in G \)). Further, it is easy to see that any family \(\{ P_a; a \in \mathcal{A} \} \) of nonempty open convex subsets of \(X \) is equi-locally connected at the points \(x_a \) for any \(x_a \in P_a \) (\(a \in \mathcal{A} \)) so the sets
The functions \(\Phi(s) \) for \(s \in F \) are equi-locally connected at \(f(s) \). Now the first assertion follows by the Theorem. To prove the second assertion, multiply \(\tilde{f} \) by \(\varphi \in A \) which satisfies \(\varphi|F = 1, |\varphi(z)| < 1 \) \((z \in \Delta) \) and has a zero at \(z_j \) of order at least \(n_j \) \([2, \text{Theorem, pp. 284–285}] \). Q.E.D.

Corollary 1 sharpens and generalizes \([2, \text{Theorem, pp. 284–285}] \). Note that in the case when \(X = C \) Corollary 1 is an easy consequence of \([6, \text{Theorem 3}] \).

Corollary 2. Let \(X \) be a complex Banach space and let \(P \subset X \) be a nonempty open connected set which is locally connected at every point of \(\overline{P} \). Let \(\varphi: G \to C \) be a continuous function such that \(\varphi(z)g(z) \in P \) \((z \in G) \) for some \(g \in A(\Delta, X) \). Given any closed set \(F \subset \partial \Delta \) of measure 0 and any continuous function \(f: F \to X \) satisfying \(\varphi(s)f(s) \in \overline{P} \) \((s \in F) \) there exists \(\tilde{f} \in A(\Delta, X) \) which extends \(f \) and satisfies \(\varphi(z)\tilde{f}(z) \in P \) \((z \in G - F) \).

Proof. Define \(\Phi(z) = \{x \in X: \varphi(z)x \in P\} \) \((z \in G) \). Since \(P \) is open and since \(\varphi \) is continuous \(\Phi \) is an open map; since \(P \) is connected \(\Phi(z) \) is connected for each \(z \in G \). By the continuity of \(\varphi \) and \(f \) the set \(S = \{\varphi(s)f(s), s \in F\} \subset \overline{P} \) is compact and consequently \(P \) is uniformly locally connected on \(S \) \([5]\). Since \(\varphi \) is bounded on \(F \) it follows easily that the sets \(\Phi(s) \) \((s \in F) \) are equi-locally connected at the points \(f(s) \). Now the assertion follows by the Theorem. Q.E.D.

Similarly we prove

Corollary 3. Let \(X \) be a complex Banach space and let \(P \subset X \) be a nonempty open connected set which is locally connected at every point of \(\overline{P} \). Let \(h: G \to X \) be a continuous function such that \(h(z) + g(z) \in P \) \((z \in G) \) for some \(g \in A(\Delta, X) \). Given any closed set \(F \subset \partial \Delta \) of measure 0 and any continuous function \(f: F \to X \) satisfying \(h(s) + f(s) \in \overline{P} \) \((s \in F) \) there exists \(\tilde{f} \in A(\Delta, X) \) which extends \(f \) and satisfies \(h(z) + \tilde{f}(z) \in P \) \((z \in G - F) \).

Next we present some dominated extension theorems for the disc algebra.

Corollary 4. Let \(p: G \to [0, \infty) \) be an upper semicontinuous (USC) function and let \(q: G \to (0, \infty) \) be a lower semicontinuous (LSC) function such that \(p(z) < |g(z)| < q(z) \) \((z \in G) \) for some \(g \in A \). Given any closed set \(F \subset \partial \Delta \) and any continuous function \(f: F \to C \) satisfying \(p(s) < |f(s)| < q(s) \) \((s \in F) \) there is an \(\tilde{f} \in A \) which extends \(f \) and satisfies \(p(z) < |\tilde{f}(z)| < q(z) \) \((z \in G - F) \).

Proof. Define \(\Phi(z) = \{\xi \in C: p(z) < |\xi| < q(z)\} \) \((z \in G) \). Let \(z_0 \in G \) and let \(\xi_0 \in \Phi(z_0) \). For some \(\epsilon > 0 \) we have \(p(z_0) + \epsilon < |\eta| < q(z_0) - \epsilon \) for all \(\eta \in \xi_0 + B_\epsilon(C) \). Since \(p \) is USC and since \(q \) is LSC there is a
neighbourhood $U \subset G$ of z_0 such that $p(z) < p(z_0) + \varepsilon$, $q(z) > q(z_0) - \varepsilon$ ($z \in U$) and consequently Φ is open on G. Clearly $\Phi(z)$ is connected for every $z \in G$. Let $0 < r < R$ and let $S = \{z \in C: r < |z| < R\}$. It is easy to see that $(z + B_r(C)) \cap S$ is connected for every $z \in S$ and for every $\varepsilon > 0$. Consequently the sets $\Phi(s)$ ($s \in F$) are equi-locally connected at the points $f(s)$. Now the assertion follows by the theorem. Q.E.D.

Remark. To prove Corollary 4 in the case when $G = \partial \Delta$ one needs to assume only that $p(z) < q(z)$ ($z \in G$) and one does not need the existence of $g \in A$. Namely, by [10, Theorem 5.3, p. 15] there exists a continuous function $\varphi: G \to R$ satisfying $p(z) < \varphi(z) < q(z)$ ($z \in G$) and since G is compact there is some $\varepsilon > 0$ such that $p(z) + \varepsilon < \varphi(z) < q(z) - \varepsilon$ ($z \in G$). By [11, p. 216] A approximates in modulus on $\partial \Delta$ so there is some $g \in A$ such that $\varphi(z) - \varepsilon < |g(z)| < \varphi(z) + \varepsilon$ ($z \in G$) and consequently $p(z) < |g(z)| < q(z)$ ($z \in G$).

Corollary 5. Let p_1, $q_1: G \to R$ be two upper semicontinuous functions and let p_2, $q_2: G \to R$ be two lower semicontinuous functions such that $p_1(z) < \text{Re} g(z) < p_2(z)$, $q_1(z) < \text{Im} g(z) < q_2(z)$ ($z \in G$) for some $g \in A$. Given any closed set $F \subset \partial \Delta$ of measure 0 and any continuous function $f: F \to C$ satisfying $p_1(s) < \text{Re} f(s) < p_2(s)$, $q_1(s) < \text{Im} f(s) < q_2(s)$ ($s \in F$) there exists an $\hat{f} \in A$ which extends f and satisfies $p_1(z) < \text{Re} \hat{f}(z) < p_2(z)$, $q_1(z) < \text{Im} \hat{f}(z) < q_2(z)$ ($z \in G - F$).

Proof. Define $\Phi(z) = \{z \in C: p_1(z) < \text{Re} \xi < p_2(z)$, $q_1(z) < \text{Im} \xi < q_2(z)$ ($z \in G$) and observe that by the semicontinuity of p_1, p_2, q_1, q_2, Φ is open on G. Further, since $\Phi(z)$ is convex for every $z \in G$ it follows that the sets $\Phi(s)$ ($s \in F$) are equi-locally connected at the points $f(s)$. Now the assertion follows by the theorem. Q.E.D.

Corollary 6. Let $p: G \to (0, \infty)$ be a lower semicontinuous function. Given any closed set $F \subset \partial \Delta$ of measure 0 and any continuous function $f: F \to C$ satisfying $|f(s)| < p(s)$, $\text{Re} f(s) > 0$ ($s \in F$) there exists an $\hat{f} \in A$ which extends f and satisfies $|f(z)| < p(z)$, $\text{Re} f(z) > 0$ ($z \in G - F$).

Proof. Define $\Phi(z) = \{z \in C: |\xi| < p(z)$, $\text{Re} \xi > 0\}$ ($z \in G$). Since p is LSC, Φ is open on G. Since p is LSC and positive and since G is compact there is some $\delta > 0$ such that $p(z) > \delta$ ($z \in G$). Define $g \in A$ by $g(z) = \delta/2$ ($z \in \Delta$). Clearly $g(z) \in \Phi(z)$ ($z \in G$). Since $\Phi(z)$ is convex for every $z \in G$ it follows that the sets $\Phi(s)$ ($s \in F$) are connected and equi-locally connected at the points $f(s)$. Now the assertion follows by the theorem. Q.E.D.

Corollary 6 with $G = \partial \Delta$ sharpens [7, Corollary 4.5]. Corollary 6 with $G = \Delta$ answers a question in [7, p. 294].
REFERENCES

INSTITUTE OF MATHEMATICS, PHYSICS AND MECHANICS, UNIVERSITY OF LJUBLJANA, LJUBLJANA, YUGOSLAVIA

Current address: Department of Mathematics, University of Washington, Seattle, Washington 98195