Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Local $ H$-maps of classifying spaces


Author: Timothy Lance
Journal: Trans. Amer. Math. Soc. 254 (1979), 195-215
MSC: Primary 55R35; Secondary 55P45, 55P60
DOI: https://doi.org/10.1090/S0002-9947-1979-0539915-6
MathSciNet review: 539915
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let BU denote the localization at an odd prime p of the classifying space for stable complex bundles, and let $ f:BU \to BU$ be an H-map with fiber F. In this paper the Hopf algebra $ {H^{\ast}}(F,\textbf{Z}/P)$ is computed for any such f. For certain H-maps f of geometric interest the p-local cohomology of F is given by means of the Bockstein spectral sequence. A direct description of $ {H^ {\ast} }(F,{{\textbf{Z}}_{(P)}})$ is also given for an important special case. Applications to the classifying spaces of surgery will appear later.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, Lectures on generalized cohomology, Category Theory, Homology Theory, and their Applications. III, Lecture Notes in Math. No. 99, Springer-Verlag, Berlin and New York, 1969. MR 0251716 (40:4943)
  • [2] J. F. Adams and S. Priddy, Uniqueness of BSO, Proc. Cambridge Philos. Soc. 80 (1976), 475-509. MR 0431152 (55:4154)
  • [3] P. F. Baum, On the cohomology of homogeneous spaces, Topology 7 (1968), 15-38. MR 0219085 (36:2168)
  • [4] A. Borel and J. P. Serre, Groups de Lie et puissances réduite de Steenrod, Amer. J. Math. 75 (1953), 409-448. MR 0058213 (15:338b)
  • [5] R. Bott and J. Milnor, On the parallelizability of the spheres, Bull. Amer. Math. Soc. 64 (1958), 87-89. MR 0102804 (21:1590)
  • [6] W. Browder, Torsion in H-spaces, Ann. of Math. (2) 74 (1961), 24-51. MR 0124891 (23:A2201)
  • [7] -, Higher torsion in H-spaces, Trans. Amer. Math. Soc. 108 (1963), 353-375. MR 0155326 (27:5260)
  • [8] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 0077480 (17:1040e)
  • [9] S. Eilenberg and J. C. Moore, Homology and fibrations. I, Comment. Math. Helv. 40 (1966), 199-236. MR 0203730 (34:3579)
  • [10] V. K. A. M. Gugenheim and J. P. May, On the theory and application of differential torsion products, Mem. Amer. Math. Soc. No. 142, 1974. MR 0394720 (52:15519)
  • [11] D. Husemoller, The structure of the Hopf algebra $ {H_{\ast}}(BU)$ over a $ {Z_{(p)}}$-algebra, Amer. J. Math. 43 (1971), 329-349. MR 0286867 (44:4074)
  • [12] D. Husemoller, J. C. Moore and J. Stasheff, Differential homological algebra and homogeneous spaces, J. Pure Appl. Algebra 5 (1974), 113-185. MR 0365571 (51:1823)
  • [13] A. Liulevicius, On characteristic classes, Nordic Summer School Notes, Aarhus Universitet, 1968. MR 0256409 (41:1065)
  • [14] J. P. May, The cohomology of principal bundles, homogeneous spaces, and two stage Postnikov systems, Bull. Amer. Math. Soc. 74 (1968), 334-339. MR 0239596 (39:953)
  • [15] -, $ {E_\infty }$ ring spaces and $ {E_\infty }$ ring spectra, Lecture Notes in Math. No. 577, Springer-Verlag, Berlin and New York, 1977.
  • [16] J. Milnor and J. Stasheff, Characteristic classes, Ann. of Math. Studies No. 76, Princeton Univ. Press, Princeton, N. J., 1974. MR 0440554 (55:13428)
  • [17] J. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211-264. MR 0174052 (30:4259)
  • [18] H. Munkholm, The Eilenberg-Moore spectral sequence and strongly homotopy multiplicative maps, J. Pure Appl. Algebra 5 (1974), 1-50. MR 0350735 (50:3227)
  • [19] F. P. Peterson, The $ \bmod\,p $ homotopy type of BSO and $ F/PL$, Bol. Soc. Mat. Mexicana 14 (1969), 22-27. MR 0259911 (41:4540)
  • [20] H. Rademacher, Lectures on elementary number theory, Blaisdell, Waltham, Mass., 1964. MR 0170844 (30:1079)
  • [21] D. Ravenel and W. S. Wilson, Bipolynomial Hopf algebras, J. Pure Appl. Algebra 4 (1974), 41-45. MR 0340320 (49:5075)
  • [22] L. Smith, Homological algebra and the Eilenberg-Moore spectral sequence, Trans. Amer. Math. Soc. 129 (1967), 58-93. MR 0216504 (35:7337)
  • [23] -, Cohomology of stable two stage Postnikov systems, Illinois J. Math. 11 (1967), 310-325. MR 0208597 (34:8406)
  • [24] E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 0210112 (35:1007)
  • [25] D. Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. (2) 100 (1974), 1-79. MR 0442930 (56:1305)
  • [26] -, Geometric topology, Part I, Localization, periodicity, and Galois symmetry. Mimeographed notes, M. I. T., 1970.
  • [27] J. Wolf, The cohomology of homogeneous spaces, Amer. J. Math. 99 (1974), 312-340. MR 0438370 (55:11284)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55R35, 55P45, 55P60

Retrieve articles in all journals with MSC: 55R35, 55P45, 55P60


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1979-0539915-6
Keywords: Localization, H-map, torsion product, cohomology
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society