SIMPLE PERIODIC ORBITS OF MAPPINGS
OF THE INTERVAL

BY

LOUIS BLOCK

Abstract. Let f be a continuous map of a closed, bounded interval into itself. A criterion is given to determine whether or not f has a periodic point whose period is not a power of 2, which just depends on the periodic orbits of f whose period is a power of 2. Also, a lower bound for the topological entropy of f is obtained.

1. Introduction. Let I denote a closed and bounded interval on the real line and let $C^0(I, I)$ denote the space of continuous maps from I into itself. This paper is concerned with periodic orbits of mappings $f \in C^0(I, I)$. Such mappings (sometimes called first order difference equations) arise as mathematical models for phenomena in the natural sciences (see [4] and [5] for some discussion and further references).

Let $f \in C^0(I, I)$. Consider the following ordering of the positive integers:

\[
1, 2, 4, 8, \ldots \ldots, 7 \cdot 8, 5 \cdot 8, 3 \cdot 8, \ldots, 7 \cdot 4, 5 \cdot 4, 3 \cdot 4, \ldots,
\]

\[
7 \cdot 2, 5 \cdot 2, 3 \cdot 2, \ldots, 7, 5, 3.
\]

A. N. Šarkovskii has proven that if m is to the left of n (in the above ordering) and f has a periodic point of period n, then f has a periodic point of period m (see [6] or [7]). This theorem suggests that the following property implies a rich orbit structure:

(1) f has a periodic point whose period is not a power of 2.

This suggestion is supported by the fact that (1) implies the following:

(2) f has a homoclinic point (see [1]);

(3) f has positive topological entropy (see [1], [2], or [7]).

Also, (2) is equivalent to (1) (see [1]) and it has been conjectured (and proved for a special case in [3]) that (3) is equivalent to (1).

In this paper we give a criterion for determining whether or not f satisfies (1) which just depends on the periodic orbits of f whose period is a power of 2. In the process we obtain a lower bound for topological entropy. The criterion we give is based on the following definition.

Definition. Let P be a periodic orbit of $f \in C^0(I, I)$ of period m, where m
is a power of 2 and \(m > 2 \). We say \(P \) is simple if for any subset \(\{q_1, \ldots, q_n\} \) of \(P \) where \(n \) divides \(m \) and \(n > 2 \), and any positive integer \(r \) which divides \(m \), such that \(\{q_1, \ldots, q_n\} \) is periodic orbit of \(f' \) with \(q_1 < q_2 < \cdots < q_n \), we have

\[
f'(\{q_1, \ldots, q_{n/2}\}) = \{q_{n/2+1}, \ldots, q_n\}.
\]

The reader may wish to see §4 where the definition of "simple" is discussed for a periodic orbit of period 8, and some examples are given.

Our main results are the following: (In this paper we include \(1 = 2^0 \) as a power of 2.)

Theorem A. Let \(f \in C^0(I, I) \), \(f \) has a periodic point whose period is not a power of 2 if and only if \(f \) has a periodic orbit of period a power of 2 which is not simple.

Theorem B. Let \(f \in C^0(I, I) \). Suppose \(f \) has a periodic orbit \(P \) of period \(m \) (where \(m = 2^k \) for some \(k \geq 2 \)) which is not simple. Then \(f \) has a periodic point of period \(3 \cdot 2^{k-2} \).

The proof of Theorems A and B uses some results of [6] and [7] which will be stated in §2. Štefan in [7] also obtains the following result which improves a theorem of Bowen and Franks (see [2]).

Theorem C. Let \(f \in C^0(I, I) \) and suppose \(f \) has a periodic point of period \(n \), where \(n = 2^d \cdot m \) and \(m \geq 3 \) is odd. Then the topological entropy of \(f \) is greater than \((1/2^d) \log \sqrt{2} \).

Thus (using Theorem C) the following is an immediate corollary of Theorem B.

Corollary D. Let \(f \in C^0(I, I) \). Suppose \(f \) has a periodic orbit of period \(m \) (where \(m = 2^k \) for some \(k \geq 2 \)) which is not simple. Then the topological entropy of \(f \) is greater than \((1/2^{k-2}) \log \sqrt{2} \).

2. Preliminary definitions and results. Let \(f \in C^0(I, I) \) and let \(N \) denote the set of positive integers. For any \(n \in N \), we define \(f^n \) inductively by \(f^1 = f \) and \(f^n = f \circ f^{n-1} \). Let \(f^0 \) denote the identity map of \(I \).

Let \(x \in I \). \(x \) is said to be a periodic point of \(f \) if \(f^n(x) = x \) for some \(n \in N \). In this case the smallest element of \(\{n \in N: f^n(x) = x\} \) is called the period of \(x \).

We define the orbit of \(x \) to be \(\{f^n(x): n = 0,1,2, \ldots \} \). If \(x \) is a periodic point we say the orbit of \(x \) is a periodic orbit, and we define the period of the orbit to be the period of \(x \). Clearly, if \(x \) is a periodic point of period \(n \), then the orbit of \(x \) contains \(n \) points and each of these points is a periodic point of \(f \) of period \(n \).
Note that a periodic point of f is always a periodic point of f^n (for any $n \in \mathbb{N}$), but the periods may be different. The following proposition (which follows immediately from the definitions) gives an example of this.

Proposition 1. Let $f \in C^0(I, I)$. Suppose P is a periodic orbit of f of period n where n is even. Then there are disjoint subsets P_1 and P_2 of P which are periodic orbits of f^2 of period $n/2$.

Now, let P be a periodic orbit of f containing at least two points. Let $P_{\text{min}}(f)$ denote the smallest element of P and $P_{\text{max}}(f)$ denote the largest element of P. Let

$$U(f) = \{ x \in I : f(x) > x \} \quad \text{and} \quad D(f) = \{ x \in I : f(x) < x \}.$$

Let $P_U(f)$ denote the largest element of $P \cap U(f)$ and $P_D(f)$ denote the smallest element of $P \cap D(f)$.

We will use the following lemma, proved by Štefan in [7] (see (9) in §B of [7]).

Lemma 2. Let $f \in C^0(I, I)$ and let P be a periodic orbit of f. If f has a fixed point between $P_{\text{min}}(f)$ and $P_{\text{max}}(f)$ (or between $P_D(f)$ and $P_U(f)$), then f has periodic orbits of every period.

The following corollary to Lemma 2 also appears in [7].

Lemma 3. Let $f \in C^0(I, I)$ and let P be a periodic orbit of f. If $P_D(f) < P_U(f)$, then f has periodic orbits of every period.

Proof. Suppose $P_D(f) < P_U(f)$. Since $f(P_D(f)) < P_D(f)$ and $f(P_U(f)) > P_U(f)$, f has a fixed point between $P_D(f)$ and $P_U(f)$. Thus, the hypothesis of Lemma 2 is satisfied. Q.E.D.

Lemma 4. Suppose $f \in C^0(I, I)$. Let $J \subset I$ and $K \subset I$ be closed intervals with $f(J) \supset K$. There is a closed interval $H \subset J$ with $f(H) = K$.

Proof. Let $K = [a, b]$ and let $A = f^{-1}(a) \cap J$ and $B = f^{-1}(b) \cap J$. Let d denote the usual metric on the real line. Since A and B are nonempty disjoint compact sets, there are points $a_1 \in A$ and $b_1 \in B$ such that $d(a_1, b_1) = d(A, B)$. Let H be the closed interval with endpoints a_1 and b_1. Then $H \cap A = \{a_1\}$ and $H \cap B = \{b_1\}$. Hence $f(H) = K$. Q.E.D.

Lemma 5. Let $f \in C^0(I, I)$. Suppose H and K are closed intervals with $H \subset K \subset I$ and $f(H) = K$. Then f has a fixed point in H.

Proof. Let $K = [a, b]$. For some $x \in H$ and $y \in H$, $f(x) = a$ and $f(y) = b$. Hence $f(x) < x$ and $f(y) > y$. Thus, f has a fixed point between x and y. Q.E.D.
Lemma 6. Let $f \in C^0(I, I)$. Let $g = f^r$ for some positive integer r which is a power of 2. Suppose there is a periodic orbit $P_0 = \{q_1, \ldots, q_n\}$ of g of period n, where n is a power of 2 and $n \geq 2$. Suppose $q_1 < q_2 < \cdots < q_n$ and for some $i < n/2$ and $j < n/2$, $g(q_i) = q_j$. Then there is a periodic orbit P of f of period a power of 2 which is not simple.

Proof. Let P be the orbit of q_1 with respect to f. Then P is a periodic orbit and $P_0 \subset P$. Let m be the period of P. We will show that $m = n \cdot r$.

We claim that, for any positive integer $s < r$ and any $q_1 \in P_0$, $f^s(q_1) \notin P_0$. To prove this, suppose that, for some positive integer $s < r$ and some $q_1 \in P_0$, $f^s(q_1) \in P_0$. We may assume (by choosing s smaller if necessary) that, for any positive integer $t < s$, $f^t(q_1) \notin P_0$ for $i = 1, \ldots, n$. Note that for $k = 0, \ldots, n - 1$,

$$f^k(f^{kr}(q_1)) = f^{kr}(f^k(q_1)) \in P_0.$$

Hence $f^s(P_0) \subset P_0$. Since f restricted to P is one-to-one, $f^s(P_0) = P_0$. Since $f^r(P_0) = P_0$ and $s < r$, it follows from the choice of s that s divides r.

Now, $f^s(P_0) = P_0$ implies that some subset P_i of P_0 is a periodic orbit of f^s. Hence $f^r(P_i) = P_i$. Since s divides r, $f^s(P_i) = P_i$. Hence $P_i = P_0$. Thus P_0 is a periodic orbit of f and a periodic orbit of f'. Since r is a power of 2, s divides r, $s < r$, and P_0 has at least two elements, we obtain a contradiction by repeated application of Proposition 1. This contradiction establishes our claim.

Next, we will show that the points

$$q_1, \ldots, q_n, f(q_1), \ldots, f(q_n), \ldots, f^{r-1}(q_1), \ldots, f^{r-1}(q_n)$$

are all distinct. Suppose $f^a(q_1) = f^b(q_1)$ where $0 < a < r - 1$, $0 < b < r - 1$, $1 < i < n$, and $1 < j < n$. We may assume that $a < b$. By applying f^{r-b} to the points $f^a(q_1)$ and $f^b(q_1)$, we see that $f^{r-b+a}(q_1) \in P_0$. Since $a < b$, $r - b + a < r$. By our claim above, $r - b + a = r$. Hence $a = b$. Again, applying f^{r-b} to the points $f^a(q_1)$ and $f^b(q_1)$ we see that $f^r(q_1) = f^r(q_1)$. Since f^r restricted to P_0 is one-to-one, $q_i = q_j$. Hence $i = j$.

Clearly,

$$P = \{q_1, \ldots, q_n, f(q_1), \ldots, f(q_n), \ldots, f^{r-1}(q_1), \ldots, f^{r-1}(q_n)\}.$$

Hence $m = n \cdot r$. Thus m is a power of 2 and r divides m. It follows from this and our hypothesis that P is not simple. Q.E.D.

3. Proof of Theorems A and B.

Lemma 7. Let $f \in C^0(I, I)$. Let $n > 3$ be an odd integer and suppose that f^n does not have any periodic orbits of period 3. Let P be a periodic orbit of f of period k, where k is a power of 2 and $k > 2$. Then $P_U(f^n) = P_U(f)$ and $P_D(f^n) = P_D(f)$.
PROOF. Note that $P_U(f^n)$ and $P_D(f^n)$ are well defined because P is a periodic orbit of f^n.

Our hypothesis implies that f does not have any periodic orbits of period $3 \cdot n$. By Lemma 3, $P_U(f) < P_D(f)$. It follows from this (and the definitions of $P_U(f)$ and $P_D(f)$) that there are no elements of P between $P_U(f)$ and $P_D(f)$. Also, by Lemma 3, $P_U(f^n) < P_D(f^n)$ and there are no elements of P between $P_U(f^n)$ and $P_D(f^n)$.

It suffices to prove that $P_U(f^n) = P_U(f)$. Suppose $P_U(f^n) \neq P_U(f)$. We have two cases.

Case 1. $P_U(f) < P_U(f^n)$. Then $P_U(f) < P_D(f) < P_U(f^n) < P_D(f^n)$. Since $f(P_{\min}(f)) > P_{\min}(f)$ and $f(P_D(f)) < P_D(f)$, f has a fixed point between $P_{\min}(f)$ and $P_D(f)$. Hence, f^n has a fixed point between $P_{\min}(f^n) = P_{\min}(f)$ and $P_U(f^n)$. By Lemma 2, f^n has periodic orbits of every period, a contradiction.

Case 2. $P_U(f^n) < P_U(f)$. Then $P_U(f^n) < P_D(f^n) < P_U(f) < P_D(f)$. It follows that f has a fixed point between $P_U(f)$ and $P_{\max}(f)$, so f^n has a fixed point between $P_D(f^n)$ and $P_{\max}(f^n)$. By Lemma 2, f^n has periodic orbits of every period, a contradiction. Q.E.D.

LEMMA 8. Let $f \in C^0(I, I)$. Let $P = \{p_1, \ldots, p_n\}$ be a periodic orbit of f of period n, where n is a power of 2 and $n > 2$, and $p_1 < p_2 < \cdots < p_n$. Suppose that, for every odd positive integer $m < n$, f^m does not have any periodic orbits of period 3. Then

$$f(\{p_1, \ldots, p_{n/2}\}) = \{p_{n/2+1}, \ldots, p_n\}$$

and

$$f(\{p_{n/2+1}, \ldots, p_n\}) = \{p_1, \ldots, p_{n/2}\}.$$

PROOF. We claim that $f(P \cap U(f)) \subset P \cap D(f)$. Suppose the claim is false. Then for some $p_0 \in P \cap U(f)$, $f(p_0) \in P \cap U(f)$. Let k be the smallest nonnegative integer with $f^k((f(p_0)) = p_1$. Note that $1 < k < n$.

If k is odd then $p_1 < f(p_0)$ and f^k has a fixed point between p_1 and $f(p_0)$. Now $f(p_0) \leq P_U(f)$ and, by Lemma 7, $P_U(f) = P_U(f^k)$. Hence, f^k has a fixed point between $P_{\min}(f^k)$ and $P_U(f^k)$. By Lemma 2, f^k has periodic orbits of every period. This contradicts our hypothesis.

If k is even then $k + 1$ is odd, $k + 1 < n$, and $f^{k+1}(p_0) = p_1$. Hence, $p_1 < p_0$ and f^{k+1} has a fixed point between p_1 and p_0. By Lemma 7, f^{k+1} has a fixed point between $P_{\min}(f^{k+1})$ and $P_U(f^{k+1})$. Again, using Lemma 2, we obtain a contradiction.

This establishes our claim that $f(P \cap U(f)) \subset P \cap D(f)$. By a similar proof, it follows that $f(P \cap D(f)) \subset P \cap U(f)$. Since the restriction of f to P is a bijection it follows that
\[f(P \cap U(f)) = P \cap D(f) \quad \text{and} \quad f(P \cap D(f)) = P \cap U(f). \]

Hence \(P \cap U(f) \) and \(P \cap D(f) \) have an equal number of points. Since \(P_0(f) < P_D(f) \) by Lemma 3, this proves Lemma 8. Q.E.D.

Proposition 9. Let \(f \in C^0(I, I) \). Suppose \(\{p_1, \ldots, p_n\} \) is a periodic orbit of \(f \) of period \(n \), where \(n \) is a power of 2 and \(n > 2 \). Suppose \(p_1 < p_2 < \cdots < p_n \) and \(f(\{p_{n/2}, \ldots, p_n\}) \neq \{p_{n/2+1}, \ldots, p_n\} \). Then \(f \) has a periodic point of period \(s \), where \(s \) is odd and \(3 \leq s \leq 3(n - 1) \).

Proof. By hypothesis and Lemma 8, for some odd integer \(m < n \), \(f^m \) has a periodic point of period 3. The conclusion follows easily from this. Q.E.D.

Lemma 10. Let \(f \in C^0(I, I) \). Suppose \(f \) has a periodic orbit \(\{p_1, p_2, p_3, p_4\} \) with \(p_1 < p_2 < p_3 < p_4 \) and \(f(\{p_1, p_2\}) \neq \{p_3, p_4\} \). Then \(f \) has a periodic point of period 3.

Proof. Let \(I_1 = [p_1, p_2] \), \(I_2 = [p_2, p_3] \), and \(I_3 = [p_3, p_4] \). Our hypothesis implies that either \(f(p_1) = p_2 \) or \(f(p_2) = p_1 \).

Case 1. \(f(p_1) = p_2 \). Since \(f(p_2) = p_3 \) or \(f(p_2) = p_4 \), we have \(f(I_1) \supset I_2 \). Also, since \(f(p_2) = p_4 \) or \(f(p_3) = p_4 \), we have \(f(I_2) \supset I_3 \). Finally, since \(f(p_3) = p_1 \) or \(f(p_4) = p_1 \), we have \(f(I_3) \supset I_1 \).

By Lemma 4, there are closed intervals \(J_1 \subset I_1, J_2 \subset I_2, \) and \(J_3 \subset I_3 \) such that \(f(J_1) = I_1, f(J_2) = J_3, \) and \(f(J_3) = J_2 \). It follows that \(f^3(J_1) = I_1 \). By Lemma 5, \(f^3 \) has a fixed point \(x \in J_1 \). Since \(f(x) \in I_2 \), \(x \) is a periodic point of \(f \) of period 3.

Case 2. \(f(p_2) = p_1 \). Then \(f(p_1) = p_3 \) or \(f(p_1) = p_4 \). Thus, \(f(I_1) \supset I_1 \), and \(f(I_1) \supset I_2 \). Also, \(f(p_2) = p_1 \) implies that \(f(I_2) \supset I_1 \). By Lemma 4, there are closed intervals \(J_1 \subset I_1, J_2 \subset I_2, \) and \(J_3 \subset I_3 \) such that \(f(J_1) = I_1, f(J_2) = J_3, \) and \(f(J_3) = J_2 \). It follows that \(f^3(J_1) = I_1 \). By Lemma 5, \(f^3 \) has a fixed point \(x \in J_1 \). Since \(f^2(x) \in I_2 \), \(x \) is a periodic point of \(f \) of period 3. Q.E.D.

Theorem B. Let \(f \in C^0(I, I) \). Suppose \(f \) has a periodic orbit \(P \) of period \(m \) (where \(m = 2^k \) for some \(k > 2 \)) which is not simple. Then \(f \) has a periodic point of period \(3 \cdot 2^{k-2} \).

Proof. By hypothesis there is a subset \(\{q_1, \ldots, q_n\} \) of \(P \) and a positive integer \(r \) which divides \(m \) such that \(\{q_1, \ldots, q_n\} \) is a periodic orbit of \(f^r \) with \(q_1 < q_2 < \cdots < q_n \) and

\[f^r(\{q_1, \ldots, q_{n/2}\}) \neq \{q_{n/2+1}, \ldots, q_n\}. \]

This implies \(n > 2 \). It follows from the proof of Lemma 6 that \(m = n \cdot r \). Hence \(r < 2^{k-2} \).

First suppose \(r = 2^{k-2} \). Then \(n = 4 \), so \(\{q_1, q_2, q_3, q_4\} \) is a periodic orbit of \(f^r \) of period 4 with \(f^r(\{q_1, q_2\}) \neq \{q_3, q_4\} \). By Lemma 10, \(f^r \) has a periodic
point of period 3. By the theorem of Šarkovskii (stated in §1), \(f \) has a periodic point of period \(3 \cdot r = 3 \cdot 2^k - 2 \).

Now suppose \(r < 2^{k-2} \). Then \(r < 2^{k-3} \). By Proposition 9, \(f' \) has a periodic point of period \(s \), where \(s \) is odd and \(s > 3 \). By the theorem of Šarkovskii, \(f \) has a periodic point of period \(3 \cdot 2^k - 2 \). Q.E.D.

Theorem A. Let \(f \in C^0(I, I) \). \(f \) has a periodic point whose period is not a power of 2 if and only if \(f \) has periodic orbit of period a power of 2 which is not simple.

Proof. The “if” part of the theorem follows from Theorem B.

Suppose \(f \) has a periodic point whose period is not a power of 2. By the theorem of Šarkovskii, stated in §1, for some positive integer \(r \) which is a power of 2, \(f' \) has a periodic orbit \(P \) of period 3. Let \(P = \{ p_1, p_2, p_3 \} \) with \(p_1 < p_2 < p_3 \).

Let \(g = f' \). Then \(g(p_1) = p_2 \) or \(g(p_3) = p_2 \). We may assume without loss of generality that \(g(p_1) = p_2 \). This implies that \(g(p_2) = p_3 \) and \(g(p_3) = p_1 \).

Since \(g(p_2) > p_2 \) and \(g(p_3) < p_3 \), \(g \) has a fixed point \(e \in (p_2, p_3) \). Let \(I_1 = [p_1, p_2] \), \(I_2 = [p_2, e] \), and \(I_3 = [e, p_3] \). Then \(g(I_1) \supset I_2 \), \(g(I_1) \supset I_3 \), \(g(I_2) \supset I_3 \), \(g(I_3) \supset I_1 \), and \(g(I_3) \supset I_2 \). By Lemma 4, there are closed intervals \(J_8 \subseteq I_3 \) with \(g(J_8) = I_1 \), \(J_7 \subseteq I_2 \) with \(g(J_7) = J_8 \), \(J_6 \subseteq I_3 \) with \(g(J_6) = J_7 \), \(J_5 \subseteq I_2 \) with \(g(J_5) = J_6 \), \(J_4 \subseteq I_1 \) with \(g(J_4) = J_5 \), \(J_3 \subseteq I_3 \) with \(g(J_3) = J_4 \), \(J_2 \subseteq I_2 \) with \(g(J_2) = J_3 \), and \(J_1 \subseteq I_1 \) with \(g(J_1) = J_2 \).

It follows that \(g^8(J_1) = I_1 \). By Lemma 5, \(g^8 \) has a fixed point \(c \in J_1 \). Hence \(c \) is a periodic point of \(g \) of period 1, 2, 4, or 8. Since \(g(c) \in I_2 \), \(g^2(c) \in I_1 \), and \(g^4(c) \in I_2 \), \(c \) is a periodic point of \(g \) of period 8.

Let \(\{ q_1, \ldots, q_8 \} \) denote the orbit of \(c \) where \(q_1 < q_2 < \cdots < q_8 \). We claim that, for some \(i \leq 4 \) and \(j \leq 4 \), \(g(q_i) = q_j \). Note that \(c \in I_1 \), \(g^4(c) \in I_1 \), \(g(c) \in I_2 \), \(g^4(c) \in I_2 \), \(g^6(c) \in I_2 \), \(g^2(c) \in I_3 \), \(g^2(c) \in I_3 \), and \(g^6(c) \in I_3 \). Hence, \(\{ q_1, q_2, q_3, q_4 \} \) contains \(c \), \(g^4(c) \), and two of the points \(g(c), g^4(c), \) and \(g^6(c) \).

First, suppose that \(g(c) \in \{ q_1, q_2, q_3, q_4 \} \). Then the claim is true with \(q_i = c \) and \(q_j = g(c) \). Now, suppose that \(g(c) \not\in \{ q_1, q_2, q_3, q_4 \} \). Then \(g^4(c) \in \{ q_1, q_2, q_3, q_4 \} \). So the claim holds with \(q_i = g^3(c) \) and \(q_j = g^4(c) \).

Thus, our claim holds in either case. By Lemma 6, \(f \) has a periodic orbit of period a power of 2 which is not simple. Q.E.D.

4. Some examples. Let \(f \in C^0(I, I) \) and let \(P = \{ p_1, \ldots, p_8 \} \) be a periodic orbit of \(f \) of period 8 with \(p_1 < p_2 < \cdots < p_8 \). Then \(P \) is simple if and only if the following two conditions hold:

1. \(f(P) = \{ p_2, p_6, p_7, p_3 \} \).
2. \(f^2(P) = \{ p_3, p_4 \} \) and \(f^3(P) = \{ p_7, p_8 \} \).

Clearly, (1) and (2) and the fact that \(P \) is a periodic orbit of period 8 imply
that
\[f(\{P_5, P_6, P_7, P_8\}) = \{P_1, P_2, P_3, P_4\}, \]
\[f^2(\{P_3, P_4\}) = \{P_1, P_2\}, \quad f^2(\{P_7, P_8\}) = \{P_5, P_6\}, \]
\[f^4(P_1) = P_2, \quad f^4(P_2) = P_1, \quad f^4(P_3) = P_4, \quad f^4(P_4) = P_3, \]
\[f^4(P_6) = P_1, \quad f^4(P_6) = P_5, \quad f^4(P_7) = P_8, \quad f^4(P_8) = P_7. \]

Example 1. \(f(P_1) = P_5, f(P_2) = P_6, f(P_3) = P_7, f(P_4) = P_8, f(P_5) = P_3, f(P_6) = P_4, f(P_7) = P_1, \) and \(f(P_8) = P_2. \)

In this example \(P \) is simple.

Example 2. \(f(P_1) = P_2, f(P_2) = P_5, f(P_3) = P_7, f(P_4) = P_8, f(P_5) = P_3, f(P_6) = P_4, f(P_7) = P_1, \) and \(f(P_8) = P_6. \)

In this example \(P \) is not simple because condition (1) above does not hold.

By Proposition 9, \(f \) has a periodic point of period \(s \), where \(s \) is odd and \(3 < s < 21 \). By Theorem C of §1, the topological entropy of \(f \) is greater than \(\log\sqrt{2} \).

Example 3. \(f(P_1) = P_5, f(P_2) = P_7, f(P_3) = P_6, f(P_4) = P_8, f(P_5) = P_2, f(P_6) = P_4, f(P_7) = P_3, \) and \(f(P_8) = P_1. \)

In this example \(P \) is not simple because condition (2) does not hold (since \(f^2(P_1) = P_5 \)). By Theorem B, \(f \) has a periodic point of period 6, and by Corollary D, the topological entropy of \(f \) is greater than \((\frac{3}{2})\log\sqrt{2} \).

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32611

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use