Oscillation and asymptotic behavior of systems of ordinary linear differential equations

Author:
Carl H. Rasmussen

Journal:
Trans. Amer. Math. Soc. **256** (1979), 1-47

MSC:
Primary 34C10; Secondary 34C11

DOI:
https://doi.org/10.1090/S0002-9947-1979-0546906-8

MathSciNet review:
546906

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Conditions are established for oscillatory and asymptotic behavior for first-order matrix systems of ordinary differential equations, including Hamiltonian systems in the selfadjoint case. Asymptotic results of Hille, Shreve, and Hartman are generalized. Disconjugacy criteria of Ahlbrandt, Tomastik, and Reid are extended.

**[1]**Calvin D. Ahlbrandt,*Disconjugacy criteria for self-adjoint differential systems*, J. Differential Equations**6**(1969), 271-295. MR**0244541 (39:5855)****[2]**-,*Equivalent boundary value problems for self-adjoint differential systems*, J. Differential Equations**9**(1971), 420-435. MR**0284636 (44:1860)****[3]**-,*Principal and antiprincipal solutions of self-adjoint differential systems and their reciprocals*, Rocky Mountain J. Math.**2**(1972), 169-182. MR**0296388 (45:5448)****[4]**John H. Barrett,*Disconjugacy of second-order linear differential equations with nonnegative coefficients*, Proc. Amer. Math. Soc.**10**(1959), 552-561. MR**0108613 (21:7329)****[5]**F. R. Gantmacher,*The theory of matrices*, Vol. I, Chelsea, New York, 1959.**[6]**Philip Hartman,*Self-adjoint non-oscillatory systems of ordinary, second order, linear differential equations*, Duke Math. J.**24**(1957), 25-35. MR**0082591 (18:576d)****[7]**-,*Ordinary differential equations*, Wiley, New York, 1964. MR**0171038 (30:1270)****[8]**Einar Hille,*Nonoscillation theorems*, Trans. Amer. Math. Soc.**64**(1948), 234-252. MR**0027925 (10:376c)****[9]**William T. Reid,*Oscillation criteria for linear differential systems with complex coefficients*, Pacific J. Math.**6**(1956), 733-751. MR**0084655 (18:898a)****[10]**-,*Principal solutions of nonoscillatory linear differential systems*, J. Math. Anal. Appl.**9**(1964), 397-423. MR**0168854 (29:6110)****[11]**-,*Ordinary differential equations*, Wiley, New York, 1971. MR**0273082 (42:7963)****[12]**-,*Generalized polar coordinate transformations for differential systems*, Rocky Mountain J. Math.**1**(1971), 383-406. MR**0280769 (43:6488)****[13]**-,*Riccati differential equations*, Academic Press, New York, 1972. MR**0357936 (50:10401)****[14]**Warren E. Shreve,*Asymptotic behavior in a second order linear matrix differential equation*, J. Differential Equations**9**(1971), 13-24. MR**0271465 (42:6348)****[15]**C. A. Swanson,*Comparison and oscillation theory of linear differential equations*, Academic Press, New York, 1968. MR**0463570 (57:3515)****[16]**Edmond C. Tomastik,*Oscillation of systems of second-order differential equations*, J. Differential Equations**9**(1971), 436-442. MR**0274863 (43:621)****[17]**Aurel Wintner,*Asymptotic integrations of the adiabatic oscillator in its hyperbolic range*, Duke Math. J.**15**(1948), 55-67. MR**0024537 (9:509g)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
34C10,
34C11

Retrieve articles in all journals with MSC: 34C10, 34C11

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1979-0546906-8

Keywords:
First-order system of differential equations,
Hamiltonian systems,
selfadjoint system,
conjugate point,
oscillation,
asymptotic behavior,
Riccati equation,
principal solution

Article copyright:
© Copyright 1979
American Mathematical Society