Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Global analysis on PL-manifolds


Author: Nicolae Teleman
Journal: Trans. Amer. Math. Soc. 256 (1979), 49-88
MSC: Primary 58G10; Secondary 57R10
MathSciNet review: 546907
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The paper deals mainly with combinatorial structures; in some cases we need refinements of combinatorial structures. Riemannian metrics are defined on any combinatorial manifold M.

The existence of distance functions and of Riemannian metrics with ``constant volume density'' implies smoothing.

A geometric realization of $ {\text{PL}}\left( m \right){\text{/O}}\left( m \right)$ is given in terms of Riemannian metrics.

A graded differential complex $ {\Omega ^ {\ast} }( M )$ is constructed: it appears as a subcomplex of Sullivan's complex of piecewise differentiable forms. In the complex $ {\Omega ^{\ast}}( M )$ the operators $ d$, $ \ast$, $ \delta$, $ \Delta$ are defined.

A Rellich chain of Sobolev spaces is presented. We obtain a Hodge-type decomposition theorem, and the Hodge homomorphism is defined and studied. We study also the combinatorial analogue of the signature operator.


References [Enhancements On Off] (What's this?)

  • [A] Shmuel Agmon, Lectures on elliptic boundary value problems, Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. MR 0178246 (31 #2504)
  • [A.S.] M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546–604. MR 0236952 (38 #5245)
  • [B.R.] Pierre Bidal and Georges de Rham, Les formes différentielles harmoniques, Comment. Math. Helv. 19 (1946), 1–49 (French). MR 0016974 (8,93b)
  • [F] Avner Friedman, Partial differential equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. MR 0445088 (56 #3433)
  • [Hd] W. V. D. Hodge, The theory and applications of harmonic integrals, Cambridge, at the University Press, 1952. 2d ed. MR 0051571 (14,500b)
  • [H] Lars Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0203075 (34 #2933)
  • [M] James Munkres, Obstructions to imposing differentiable structures, Illinois J. Math. 8 (1964), 361–376. MR 0180979 (31 #5209)
  • [Mi] J. Milnor, Microbundles. I, Topology 3 (1964), no. suppl. 1, 53–80. MR 0161346 (28 #4553b)
  • [P] Richard S. Palais, Seminar on the Atiyah-Singer index theorem, With contributions by M. F. Atiyah, A. Borel, E. E. Floyd, R. T. Seeley, W. Shih and R. Solovay. Annals of Mathematics Studies, No. 57, Princeton University Press, Princeton, N.J., 1965. MR 0198494 (33 #6649)
  • [R] G. de Rham, Variétés différentiables, formes, currants, formes harmonique, Actualités Sci. Indus., no. 1222, Hermann, Paris, 1960.
  • [S] I. M. Singer, Future extensions of index theory and elliptic operators, Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970) Princeton Univ. Press, Princeton, N.J., 1971, pp. 171–185. Ann. of Math. Studies, No. 70. MR 0343319 (49 #8061)
  • [Sc] Laurent Schwartz, Théorie des distributions, Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. IX-X. Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, 1966 (French). MR 0209834 (35 #730)
  • [Su$ _{1}$] D. Sullivan, Differential forms and the topology of manifolds, Proc. Tokyo Conf. on Manifolds, Univ. of Tokyo Press, Tokyo, 1973.
  • [Su$ _{2}$] -, Geometric topology. I, M.I.T. Notes, 1969.
  • [T] Noboru Tanaka, A differential geometric study on strongly pseudo-convex manifolds, Kinokuniya Book-Store Co., Ltd., Tokyo, 1975. Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 9. MR 0399517 (53 #3361)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58G10, 57R10

Retrieve articles in all journals with MSC: 58G10, 57R10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1979-0546907-X
PII: S 0002-9947(1979)0546907-X
Keywords: Riemannian structure on PL-manifold, constant volume density, distance function, distributions, Sobolev spaces, Hodge theory, signature operator
Article copyright: © Copyright 1979 American Mathematical Society