On the Littlewood-Paley theory for mixed norm spaces

Author:
John A. Gosselin

Journal:
Trans. Amer. Math. Soc. **256** (1979), 113-124

MSC:
Primary 42C10

DOI:
https://doi.org/10.1090/S0002-9947-1979-0546910-X

MathSciNet review:
546910

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An inequality of Littlewood-Paley type is proved for the mixed norm spaces , , , on the interval . This result makes use of recent work by C. Fefferman and A. Cordoba on the boundedness of singular integrals on these spaces. As an application of this inequality, boundedness of the lacunary maximal partial sum operator for Walsh-Fourier series on is established. This result can be viewed as an extension of a similar result for the Hardy-Littlewood maximal function due to C. Fefferman and E. M. Stein.

**[1]**A. Benedeck and R. Panzone,*The spaces**with mixed norm*, Duke Math. J.**29**(1961), 301-324.**[2]**A. Cordoba and C. Fefferman,*A weighted norm inequality for singular integrals*, Studia Math.**57**(1976), no. 1, 97–101. MR**0420115**, https://doi.org/10.4064/sm-57-1-97-101**[3]**C. Fefferman and E. M. Stein,*Some maximal inequalities*, Amer. J. Math.**93**(1971), 107–115. MR**0284802**, https://doi.org/10.2307/2373450**[4]**R. John,*Weighted norm inequalities for singular and hypersingular integrals*, Doctoral Dissertation, Rutgers University, New Brunswick, N. J., 1975.**[5]**Richard A. Hunt,*Almost everywhere convergence of Walsh-Fourier series of 𝐿² functions*, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 655–661. MR**0511000****[6]**Richard A. Hunt and Wo Sang Young,*A weighted norm inequality for Fourier series*, Bull. Amer. Math. Soc.**80**(1974), 274–277. MR**0338655**, https://doi.org/10.1090/S0002-9904-1974-13458-0**[7]**R. E. A. C. Paley,*A remarkable series of orthogonal functions*. I, Proc. London Math. Soc.**34**(1932), 241-264.**[8]**D. Pankratz,*Almost everywhere convergence of lacunary partial sums of Walsh-Fourier series*, Doctoral Dissertation, Purdue University, Lafayette, Ind., 1974.**[9]**Elias M. Stein,*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095****[10]**-,*Topic i harmoni analysi relate t the Littlewood-Paley theo*ry, Ann. of Math. Studies, no. 63, Princeton Univ. Press, Princeton, N. J., 1970.**[11]**Young Jin Suh,*Some Liouville type inequalities and its applications to geometric problems*, Differential geometry (Sakado, 2001) Josai Math. Monogr., vol. 3, Josai Univ., Sakado, 2001, pp. 11–19. MR**1824594****[12]**A. Zygmund,*Trigonometric series. 2nd ed. Vols. I, II*, Cambridge University Press, New York, 1959. MR**0107776**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
42C10

Retrieve articles in all journals with MSC: 42C10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1979-0546910-X

Keywords:
Mixed norm spaces,
Littlewood-Paley function,
Khinchine's inequality,
Rademacher functions,
Walsh-Fourier series,
Hardy-Littlewood maximal function,
lacunary maximal partial sum operator

Article copyright:
© Copyright 1979
American Mathematical Society