Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

An equivariant Wall obstruction theory


Author: Jenny A. Baglivo
Journal: Trans. Amer. Math. Soc. 256 (1979), 305-324
MSC: Primary 57S17; Secondary 55P99
DOI: https://doi.org/10.1090/S0002-9947-1979-0546920-2
MathSciNet review: 546920
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let G be a finite group. For a certain class of CW-complexes with a G-action which are equivariantly dominated by a finite complex we define algebraic invariants to decide when the space is equivariantly homotopy or homology equivalent to a finite complex.


References [Enhancements On Off] (What's this?)

  • [1] H. Bass, Algebraic K-theory, Benjamin, New York, 1968. MR 0249491 (40:2736)
  • [2] G. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972. MR 0413144 (54:1265)
  • [3] K. Brown, Homological criteria for finiteness, Comment. Math. Helv 50 (1975), 129-135. MR 0376820 (51:12995)
  • [4] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 0077480 (17:1040e)
  • [5] C. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Wiley, New York, 1966. MR 1013113 (90g:16001)
  • [6] S. M. Gersten, A product formula for Wall's obstruction. Amer. J. Math. 88 (1966), 337-346. MR 0198465 (33:6623)
  • [7] M. Hall, The theory of groups, Macmillan, New York, 1959. MR 0103215 (21:1996)
  • [8] L. Jones, The converse to the fixed point theorem of P. A. Smith. I, Ann. of Math. 94 (1971), 52-68. MR 0295361 (45:4427)
  • [9] A. Lundell and S. Weingram, The topology of CW complexes. Van Nostrand Reinhold, New York, 1969. MR 0238319 (38:6595)
  • [10] T. Matumoto, On G-CW complexes and a theorem of J. H. C. Whitehead, J. Fac. Sci. Univ. Tokyo Sect. I A Math. 18 (1971), 363-374. MR 0345103 (49:9842)
  • [11] J. Milnor, Introduction to algebraic K-theory, Princeton Univ. Press, Princeton, N. J., 1971. MR 0349811 (50:2304)
  • [12] -, Uses of the fundamental group, Colloquium Lectures, 73rd Summer Meeting of the Amer. Math. Soc., University of Wisconsin, 1968.
  • [13] D. Rim, Modules over finite groups, Ann. of Math. 69 (1959), 700-712. MR 0104721 (21:3474)
  • [14] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 0210112 (35:1007)
  • [15] C. T. C. Wall, Finiteness conditions for CW complexes, Ann. of Math. 81 (1965), 55-69. MR 0171284 (30:1515)
  • [16] -, Finiteness conditions for CW complexes. II, Proc. Roy. Soc. London Ser. A 295 (1966), 129-139. MR 0211402 (35:2283)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57S17, 55P99

Retrieve articles in all journals with MSC: 57S17, 55P99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1979-0546920-2
Keywords: G-complex, Wall obstruction, G-equivalence, G-homology equivalence
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society