Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Rotundity in Lebesgue-Bochner function spaces


Authors: Mark A. Smith and Barry Turett
Journal: Trans. Amer. Math. Soc. 257 (1980), 105-118
MSC: Primary 46E40; Secondary 46B20
DOI: https://doi.org/10.1090/S0002-9947-1980-0549157-4
MathSciNet review: 549157
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper concerns the isometric theory of the Lebesgue-Bochner function space $ {L^p}(\mu ,\,X)$ where $ 1 < p < \infty $. Specifically, the question of whether a geometrical property lifts from X to $ {L^p}\,(\mu ,\,X)$ is examined. Positive results are obtained for the properties local uniform rotundity, weak uniform rotundity, uniform rotundity in each direction, midpoint local uniform rotundity, and B-convexity. However, it is shown that the Radon-Riesz property does not lift from X to $ {L^p}\,(\mu ,\,X)$. Consequently, Lebesgue-Bochner function spaces with the Radon-Riesz property are examined more closely.


References [Enhancements On Off] (What's this?)

  • [1] K. W. Anderson, Midpoint local uniform convexity, and other geometric properties of Banach spaces, Dissertation, University of Illinois, 1960.
  • [2] A. Beck, A convexity condition in Banach spaces and the strong law of large numbers, Proc. Amer. Math. Soc. 13 (1962), 329-334. MR 0133857 (24:A3681)
  • [3] S. Bochner and A. E. Taylor, Linear functionals on certain spaces of abstractly-valued functions, Ann. of Math. (2) 39 (1938), 913-944. MR 1503445
  • [4] M. M. Day, Some more uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), 504-507. MR 0004068 (2:314a)
  • [5] -, Strict convexity and smoothness of normed spaces, Trans. Amer. Math. Soc. 78 (1955), 516-528. MR 0067351 (16:716a)
  • [6] -, Normed linear spaces, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21, Springer-Verlag, New York, 1973. MR 0344849 (49:9588)
  • [7] J. Diestel and J. J. Uhl, Jr., Vector measures, Math. Surveys, No. 15, Amer. Math. Soc., Providence, R. I., 1977. MR 0453964 (56:12216)
  • [8] A. L. Garkavi, The best possible net and best possible cross section of a set in a normed space, Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 87-106 = Amer. Math. Soc. Transl. (2) 39 (1964), 111-132. MR 0136969 (25:429)
  • [9] D. P. Giesy, On a convexity condition in normed linear spaces, Trans. Amer. Math. Soc. 125 (1966), 114-146. MR 0205031 (34:4866)
  • [10] R. C. James, Uniformly non-square Banach spaces, Ann. of Math. (2) 80 (1964), 542-550. MR 0173932 (30:4139)
  • [11] E. Leonard, Banach sequence spaces, J. Math. Anal. Appl. 54 (1976), 245-265. MR 0420216 (54:8230)
  • [12] E. Leonard and K. Sundaresan, Geometry of Lebesgue-Bochner function spaces-smoothness, Bull. Amer. Math. Soc. 79 (1973), 546-549. MR 0326376 (48:4720)
  • [13] A. R. Lovaglia, Locally uniformly convex Banach spaces, Trans. Amer. Math. Soc. 78 (1955), 225-238. MR 0066558 (16:596d)
  • [14] E. J. McShane, Linear functionals on certain Banach spaces, Proc. Amer. Math. Soc. 1 (1950), 402-408. MR 0036448 (12:110d)
  • [15] J. Radon, Theorie und Anwendungen der absolut additiven Mengen funktionen, Sitzungsber. Akad. Wiss. Wien 122 (1913), 1295-1438.
  • [16] F. Riesz, Sur la convergence en moyenne. I, II, Acta Sci. Math. (Szeged) 4 (1928-1929), 58-64, 182-185.
  • [17] H. P. Rosenthal, Some applications of p-summing operators to Banach space theory, Studia Math. 58 (1977), 21-43. MR 0430749 (55:3754)
  • [18] M. A. Smith, Products of Banach spaces that are uniformly rotund in every direction, Pacific J. Math. 73 (1977), 215-219. MR 0463892 (57:3830)
  • [19] -, Some examples concerning rotundity in Banach spaces, Math. Ann. 233 (1978), 155-161. MR 0482080 (58:2168)
  • [20] V. L. Šmul'yan, Sur la dérivabilité de la norme dans l'espace de Banach, Dokl. Akad. Nauk URSS 27 (1940), 643-648. MR 0002704 (2:102f)
  • [21] K. Sundaresan, Uniformly non-$ l_n^{(1)}$ Orlicz spaces, Israel J. Math. 3 (1965), 139-146. MR 0194876 (33:3082)
  • [22] -, Uniformly non-square Orlicz spaces, Nieuw Arch. Wisk. 14 (1966), 31-39. MR 0193497 (33:1717)
  • [23] -, The Radon-Nikodým theorem for Lebesgue-Bochner function spaces, J. Functional Analysis 24 (1977), 276-279. MR 0450956 (56:9246)
  • [24] B. Turett and J. J. Uhl, Jr., $ {L_p}(\mu ,\,X)\,(1 < p < \infty )$ has the Radon-Nikodým property if X does by martingales, Proc. Amer. Math. Soc. 61 (1976), 347-350. MR 0423069 (54:11052)
  • [25] V. Zizler, On some rotundity and smoothness properties of Banach spaces, Dissertationes Math. (Rozprawy Mat.) 87 (1971). MR 0300060 (45:9108)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E40, 46B20

Retrieve articles in all journals with MSC: 46E40, 46B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1980-0549157-4
Keywords: Lebesgue-Bochner function space, locally uniformly rotund, weakly uniformly rotund, B-convex, uniformly non-$ {l^1}(n)$, Radon-Riesz property
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society