Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On positive contractions in $ L\sp{p}$-spaces


Author: H. H. Schaefer
Journal: Trans. Amer. Math. Soc. 257 (1980), 261-268
MSC: Primary 47B55
DOI: https://doi.org/10.1090/S0002-9947-1980-0549167-7
MathSciNet review: 549167
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let T denote a positive contraction $ (T\, \geqslant \,0,\,\left\Vert T \right\Vert\, \leqslant \,1)$ on a space $ {L^p}(\mu )\,(1\, < \,p\, < \, + \,\infty )$. A primitive nth root of unity $ \varepsilon $ is in the point spectrum $ P\sigma (T)$ iff it is in $ P\sigma (T')$; if so, the unimodular group generated by $ \varepsilon $ is in both $ P\sigma (T)$ and $ P\sigma (T')$. In turn, this is equivalent to the existence of n-dimensional Riesz subspaces of $ {L^p}$ and $ {L^q}({p^{ - \,1}}\, + \,{q^{ - \,1}}\, = \,1)$ which are in canonical duality and on which T (resp., $ T'$) acts as an isometry. If, in addition, T is quasi-compact then the spectral projection associated with the unimodular spectrum of T (resp., $ T'$) is a positive contraction onto a Riesz subspace of $ {L^p}$ (resp., $ {L^q}$) on which T (resp., $ T'$) acts as an isometry.


References [Enhancements On Off] (What's this?)

  • [1] N. Dunford and J. T.Schwartz, Linear operators, vol. I, Wiley-Interscience, New York, 1958.
  • [2] Michael Lin, Quasi-compactness and uniform ergodicity of positive operators, Israel J. Math. 29 (1978), 309-311. MR 0493502 (58:12502)
  • [3] H. H. Schaefer, Banach lattices and positive operators, Grundlehren der Math. Wissenschaften, vol. 215, Springer-Verlag, Berlin and New York, 1974. MR 0423039 (54:11023)
  • [4] D. Vere-Jones, Ergodic properties of nonnegative matrices. I, Pacific J. Math. 22 (1967), 361-386. MR 0214145 (35:4996)
  • [5] -, Ergodic properties of nonnegative matrices. II, Pacific J. Math. 26 (1968), 601-620. MR 0236745 (38:5039)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47B55

Retrieve articles in all journals with MSC: 47B55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1980-0549167-7
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society