The lattice of group varieties
Author:
J. E. Smith
Journal:
Trans. Amer. Math. Soc. 257 (1980), 347357
MSC:
Primary 06F15; Secondary 06B20
MathSciNet review:
552262
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: For any type of abstract algebra, a variety is an equationally defined class of such algebras. Recently, attempts have been made to study varieties of latticeordered groups (lgroups). Martinez has shown that the set L of all lgroup varieties forms a lattice under set inclusion with a compatible associative multiplication. Certain varieties (p prime) have been proved by Scrimger to be minimal nonabelian varieties in L. In the present paper, it is shown that these varieties can be used to produce varieties minimal with respect to properly containing various other varieties in L. Also discussed are the relations among the , and it is established that all infinite collections of the have the same least upper bound in L. Martinez has also classified lgroups using torsion classes, a generalization of the idea of varieties. It is proved here that L is not a sublattice of T, the lattice of torsion classes.
 [1]
S. J. Bernau, Varieties of lattice groups are closed under completion, Sympos. Math. 21 (1977).
 [2]
Garrett
Birkhoff, Lattice Theory, American Mathematical Society, New
York, 1940. MR
0001959 (1,325f)
 [3]
G. Grätzer, Lattice theory, Freeman, San Francisco, Calif., 1971.
 [4]
George
Grätzer, Universal algebra, D. Van Nostrand Co., Inc.,
Princeton, N.J.Toronto, Ont.London, 1968. MR 0248066
(40 #1320)
 [5]
Charles
Holland, The latticeordered groups of automorphisms of an ordered
set, Michigan Math. J. 10 (1963), 399–408. MR 0158009
(28 #1237)
 [6]
W.
Charles Holland, The largest proper variety of lattice
ordered groups, Proc. Amer. Math. Soc.
57 (1976), no. 1,
25–28. MR
0406902 (53 #10688), http://dx.doi.org/10.1090/S00029939197604069020
 [7]
W.
Charles Holland, Varieties of 𝑙groups are torsion
classes, Czechoslovak Math. J. 29(104) (1979),
no. 1, 11–12. MR 518135
(80b:06017)
 [8]
J. T. Lloyd, Latticeordered groups and opermutation groups, Dissertation, Tulane University, 1964.
 [9]
Jorge
Martinez, Free products in varieties of latticeordered
groups, Czechoslovak Math. J. 22(97) (1972),
535–553. MR 0311536
(47 #98)
 [10]
Jorge
Martinez, Varieties of latticeordered groups, Math. Z.
137 (1974), 265–284. MR 0354483
(50 #6961)
 [11]
Jorge
Martinez, Torsion theory for latticeordered groups,
Czechoslovak Math. J. 25(100) (1975), 284–299. MR 0389705
(52 #10536)
 [12]
Hanna
Neumann, Varieties of groups, SpringerVerlag New York, Inc.,
New York, 1967. MR 0215899
(35 #6734)
 [13]
E.
B. Scrimger, A large class of small varieties of
latticeordered groups, Proc. Amer. Math.
Soc. 51 (1975),
301–306. MR 0384644
(52 #5517), http://dx.doi.org/10.1090/S00029939197503846447
 [14]
Elliot
Carl Weinberg, Free latticeordered abelian groups. II, Math.
Ann. 159 (1965), 217–222. MR 0181668
(31 #5895)
 [1]
 S. J. Bernau, Varieties of lattice groups are closed under completion, Sympos. Math. 21 (1977).
 [2]
 G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I., 1940. MR 0001959 (1:325f)
 [3]
 G. Grätzer, Lattice theory, Freeman, San Francisco, Calif., 1971.
 [4]
 , Universal algebra, Van Nostrand, Princeton, N. J., 1968. MR 0248066 (40:1320)
 [5]
 W. C. Holland, The latticeordered group of automorphisms of an ordred set, Michigan Math. J. 10 (1963), 399408. MR 0158009 (28:1237)
 [6]
 , The largest proper variety of latticeordered groups, Proc. Amer. Math. Soc. 57 (1976), 2528. MR 0406902 (53:10688)
 [7]
 , Varieties of lgroups are torsion classess, Czechoslovak Math. J. 29 (104) (1979), 1112. MR 518135 (80b:06017)
 [8]
 J. T. Lloyd, Latticeordered groups and opermutation groups, Dissertation, Tulane University, 1964.
 [9]
 J. Martinez, Free products in varieties of latticeordered groups, Czechoslovak Math. J. 22 (97) (1972), 535553. MR 0311536 (47:98)
 [10]
 , Varieties of latticeordered groups, Math. Z. 137 (1974), 265284. MR 0354483 (50:6961)
 [11]
 , Torsion theory for latticeordered groups, Czechoslovak Math. J. 25 (100) (1975), 284299. MR 0389705 (52:10536)
 [12]
 H. Neumann, Varieties of groups, Ergebnisse der Math. und ihrer Grenzgebiete, vol. 37, SpringerVerlag, New York, 1967. MR 0215899 (35:6734)
 [13]
 E. B. Scrimger, A large class of small varieties of latticeordered groups, Proc. Amer. Math. Soc. 51 (1975), 301306. MR 0384644 (52:5517)
 [14]
 E. C. Weinberg, Free latticeordered abelian groups. II, Math. Ann. 159 (1965), 217222. MR 0181668 (31:5895)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
06F15,
06B20
Retrieve articles in all journals
with MSC:
06F15,
06B20
Additional Information
DOI:
http://dx.doi.org/10.1090/S0002994719800552262X
PII:
S 00029947(1980)0552262X
Keywords:
Latticeordered group,
variety,
lattice,
Scrimger variety,
torsion class
Article copyright:
© Copyright 1980
American Mathematical Society
