The lattice of -group varieties

Author:
J. E. Smith

Journal:
Trans. Amer. Math. Soc. **257** (1980), 347-357

MSC:
Primary 06F15; Secondary 06B20

DOI:
https://doi.org/10.1090/S0002-9947-1980-0552262-X

MathSciNet review:
552262

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For any type of abstract algebra, a variety is an equationally defined class of such algebras. Recently, attempts have been made to study varieties of lattice-ordered groups (*l*-groups). Martinez has shown that the set **L** of all *l*-group varieties forms a lattice under set inclusion with a compatible associative multiplication. Certain varieties (*p* prime) have been proved by Scrimger to be minimal nonabelian varieties in **L**. In the present paper, it is shown that these varieties can be used to produce varieties minimal with respect to properly containing various other varieties in **L**. Also discussed are the relations among the , and it is established that all infinite collections of the have the same least upper bound in **L**. Martinez has also classified *l*-groups using torsion classes, a generalization of the idea of varieties. It is proved here that **L** is not a sublattice of **T**, the lattice of torsion classes.

**[1]**S. J. Bernau,*Varieties of lattice groups are closed under*-*completion*, Sympos. Math.**21**(1977).**[2]**G. Birkhoff,*Lattice theory*, Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I., 1940. MR**0001959 (1:325f)****[3]**G. Grätzer,*Lattice theory*, Freeman, San Francisco, Calif., 1971.**[4]**-,*Universal algebra*, Van Nostrand, Princeton, N. J., 1968. MR**0248066 (40:1320)****[5]**W. C. Holland,*The lattice-ordered group of automorphisms of an ordred set*, Michigan Math. J.**10**(1963), 399-408. MR**0158009 (28:1237)****[6]**-,*The largest proper variety of lattice-ordered groups*, Proc. Amer. Math. Soc.**57**(1976), 25-28. MR**0406902 (53:10688)****[7]**-,*Varieties of l-groups are torsion classess*, Czechoslovak Math. J.**29**(104) (1979), 11-12. MR**518135 (80b:06017)****[8]**J. T. Lloyd,*Lattice-ordered groups and o-permutation groups*, Dissertation, Tulane University, 1964.**[9]**J. Martinez,*Free products in varieties of lattice-ordered groups*, Czechoslovak Math. J.**22**(97) (1972), 535-553. MR**0311536 (47:98)****[10]**-,*Varieties of lattice-ordered groups*, Math. Z.**137**(1974), 265-284. MR**0354483 (50:6961)****[11]**-,*Torsion theory for lattice-ordered groups*, Czechoslovak Math. J.**25**(100) (1975), 284-299. MR**0389705 (52:10536)****[12]**H. Neumann,*Varieties of groups*, Ergebnisse der Math. und ihrer Grenzgebiete, vol. 37, Springer-Verlag, New York, 1967. MR**0215899 (35:6734)****[13]**E. B. Scrimger,*A large class of small varieties of lattice-ordered groups*, Proc. Amer. Math. Soc.**51**(1975), 301-306. MR**0384644 (52:5517)****[14]**E. C. Weinberg,*Free lattice-ordered abelian groups*. II, Math. Ann.**159**(1965), 217-222. MR**0181668 (31:5895)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
06F15,
06B20

Retrieve articles in all journals with MSC: 06F15, 06B20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1980-0552262-X

Keywords:
Lattice-ordered group,
variety,
lattice,
Scrimger variety,
torsion class

Article copyright:
© Copyright 1980
American Mathematical Society