Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

The free boundary for elastic-plastic torsion problems


Authors: Avner Friedman and Gianni A. Pozzi
Journal: Trans. Amer. Math. Soc. 257 (1980), 411-425
MSC: Primary 35R35; Secondary 49A29, 73C99, 73K99
MathSciNet review: 552267
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Consider the variational inequality: Find $ u\, \in\, K$ such that $ \int_Q {\nabla u \cdot\, \nabla\, (\upsilon\, -\, u)\, \geqslant\, \mu\, \int_Q\, {(\upsilon\, -\, u)\,(\mu\, >\, 0)} } $ for any $ \upsilon\, \in\, K$, where $ K\, =\, \{ w\, \in\, H_0^1(Q);\,\left\vert {\nabla\, w} \right\vert\, \leqslant\, 1\} $ and Q is a 2-dimensional simply connected domain in $ {R^2}$ with piecewise $ {C^3}$ boundary. The solution u represents the stress function in a torsion problem of an elastic-plastic bar with cross section Q. The sets $ E\, =\, \{ x\, \in\, Q;\,\left\vert {\nabla\, u(x)} \right\vert\, <\, 1\} $, $ P\, =\, \{ x\, \in\, Q;\,\left\vert {\nabla\, u(x)} \right\vert\, =\, 1\} $ are the elastic and plastic sets respectively. The purpose of this paper is to study the free boundary $ \partial E\, \cap\, Q$; more specifically, an estimate is derived on the number of points of local maximum of the free boundary.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35R35, 49A29, 73C99, 73K99

Retrieve articles in all journals with MSC: 35R35, 49A29, 73C99, 73K99


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1980-0552267-9
PII: S 0002-9947(1980)0552267-9
Article copyright: © Copyright 1980 American Mathematical Society