Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Cosmoi of internal categories


Author: Ross Street
Journal: Trans. Amer. Math. Soc. 258 (1980), 271-318
MSC: Primary 18D35; Secondary 18C10, 18F20
DOI: https://doi.org/10.1090/S0002-9947-1980-0558176-3
MathSciNet review: 558176
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An internal full subcategory of a cartesian closed category $ \mathcal{A}$, is shown to give rise to a structure on the 2-category $ Cat(\mathcal{A})$ of categories in $ \mathcal{A}$ which introduces the notion of size into the analysis of categories in $ \mathcal{A}$ and allows proofs by transcendental arguments. The relationship to the currently popular study of locally internal categories is examined.

Internal full subcategories of locally presentable categories (in the sense of Gabriel-Ulmer) are studied in detail. An algorithm is developed for their construction and this is applied to the categories of double categories, triple categories, and so on.


References [Enhancements On Off] (What's this?)

  • [1] M. Artin, A Grothendieck and J. L. Verdier (editors), Théorie des topos et cohomologie etale des schémas, Lecture Notes in Math., vol. 269, Springer-Verlag, Berlin and New York, 1972. MR 0354653 (50:7131)
  • [2] A. Bastiani and C. Ehresmann, Categories of sketched structures, Cahiers Topologie Géom. Différentielle 13 (1972), 1-105. MR 0323856 (48:2211)
  • [3] J. Bénabou, Théories relatives à un corpus, C. R. Acad. Sci. Paris Sér. A 281 (1975), 831-834.
  • [4] -, Fibrations petites et localement petites, C. R. Acad. Sci. Paris Sér. A 281 (1975), 897-900. MR 0393181 (52:13991)
  • [5] J. Celeyrette, Fibrations et extensions de Kan, Thèse de $ {3^e}$ cycle, Université Paris-Nord, 1974.
  • [6] B. J. Day, A reflection theorem for closed categories, J. Pure Appl Algebra 2 (1972), 1-11. MR 0296126 (45:5187)
  • [7] -, Limit spaces and closed span categories, Lecture Notes in Math., vol. 420, Springer-Verlag, Berlin and New York, 1974, pp. 65-74. MR 0374240 (51:10440)
  • [8] R. Diaconescu, Change of base for toposes with generators, J. Pure Appl. Algebra 6 (1975), 191-218. MR 0379627 (52:532)
  • [9] E. Dubuc, Adjoint triangles, Lecture Notes in Math., vol. 61, Springer-Verlag, Berlin and New York, 1968, pp. 69-91. MR 0233864 (38:2185)
  • [10] S. Eilenberg and G. M. Kelly, Closed categories, Proc. Conf. Categorical Algebra at La Jolla, Springer-Verlag, Berlin and New York, 1966, pp. 421-562. MR 0225841 (37:1432)
  • [11] P. J. Freyd, Abelian categories, Harper & Row, New York, 1964.
  • [12] -, Aspects of topoi, Bull. Austral. Math. Soc. 7 (1972), 1-76. MR 0396714 (53:576)
  • [13] P. J. Freyd and G. M. Kelly, Categories of continuous functors. I, J. Pure Appl. Algebra 2 (1972), 169-191. MR 0322004 (48:369)
  • [14] P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Math. und ihrer Grenzgebiete, vol. 35, Springer-Verlag, Berlin and New York, 1967. MR 0210125 (35:1019)
  • [15] P. Gabriel and F. Ulmer, Lokal präsentierbare Kategorien, Lecture Notes in Math., vol. 221, Springer-Verlag, Berlin and New York, 1971. MR 0327863 (48:6205)
  • [16] J. Giraud, Cohomologie non abélienne, Die Grundlehren der math. Wissenschaften, vol. 179, Springer-Verlag, Berlin and New York, 1971. MR 0344253 (49:8992)
  • [17] J. W. Gray, The categorical comprehension scheme, Lecture Notes in Math., vol. 99, Springer-Verlag, Berlin and New York, 1969, pp. 242-312. MR 0249483 (40:2728)
  • [18] P. T. Johnstone, Topos theory, London Math. Soc. Monographs, vol. 10, Academic Press, New York, 1977. MR 0470019 (57:9791)
  • [19] G. M. Kelly and R. H. Street, Review of the elements of 2-categories, Lecture Notes in Math., vol. 420, Springer-Verlag, Berlin and New York, 1974, pp. 75-103. MR 0357542 (50:10010)
  • [20] F. W. Lawvere, Closed categories of variable quantities over a base topos, Notices Amer. Math. Soc. 23 (1976), Abstract #737-18-8.
  • [21] S. Mac Lane, Categories for the working mathematician, Graduate Texts in Math., vol. 5, Springer-Verlag, Berlin and New York, 1971. MR 0354798 (50:7275)
  • [22] R. Paré and D. Schumacher, Abstract families and the adjoint functor theorems (preprint). MR 514193 (80b:18004)
  • [23] J. Penon, Quasitopos, C. R. Acad. Sci. Paris Sér. A 276 (1973), 237-240. MR 0332921 (48:11246)
  • [24] -, Catégories localement internes, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1577-1580. MR 0374235 (51:10435)
  • [25] R. H. Street, The formal theory of monads, J. Pure Appl. Algebra 2 (1972), 149-168. MR 0299653 (45:8701)
  • [26] -, Two constructions on lax functors, Cahiers Topologie Géom. Différentielle 13 (1972), 217-264. MR 0347936 (50:436)
  • [27] -, Fibrations and Yoneda's Lemma in a 2-category, Lecture Notes in Math., vol. 420, Springer-Verlag, Berlin and New York, 1974, pp. 104-133. MR 0396723 (53:585)
  • [28] -, Elementary cosmoi. I, Lecture Notes in Math., vol. 420, Springer-Verlag, Berlin and New York, 1974, pp. 134-180. MR 0354813 (50:7290)
  • [29] -, Limits indexed by category-valued 2-functors, J. Pure Appl. Algebra 8 (1976), 149-181. MR 0401868 (53:5695)
  • [30] R. H. Street and R. F. C. Walters, Yoneda structures on 2-categories, J. Algebra 50 (1978), 350-379. MR 0463261 (57:3214)
  • [31] -, The comprehensive factorization of a functor, Bull. Amer. Math. Soc. 79 (1973), 936-941. MR 0346027 (49:10753)
  • [32] R. Wood, Indicial methods for relative categories, Ph.D. dissertation, Dalhousie University, Canada, 1976.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 18D35, 18C10, 18F20

Retrieve articles in all journals with MSC: 18D35, 18C10, 18F20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1980-0558176-3
Keywords: Internal full subcategory, locally presentable category, locally small, fibred category, site, sketched structures, Gabriel theory, internally complete, cartesian closed, multiple category
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society