The Witt ring of a space of orderings

Author:
Murray Marshall

Journal:
Trans. Amer. Math. Soc. **258** (1980), 505-521

MSC:
Primary 10C05; Secondary 12D15

MathSciNet review:
558187

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The theory of ``space of orderings'' generalizes the reduced theory of quadratic forms over fields (or, more generally, over semilocal rings). The category of spaces of orderings is equivalent to a certain category of ``abstract Witt rings". In the particular case of the space of orderings of a formally real field *K*, the corresponding abstract Witt ring is just the reduced Witt ring of *K*. In this paper it is proved that if is any space of orderings with Witt ring *W*(*X*), and is any continuous function, then *g* is represented by an element of *W*(*X*) if and only if holds for all finite fans . This generalizes a recent field theoretic result of Becker and Bröcker. Following the proof of this, applications are given to the computation of the stability index of *X*, and to the representation of continuous functions by elements of *G*.

**[BB]**Eberhard Becker and Ludwig Bröcker,*On the description of the reduced Witt ring*, J. Algebra**52**(1978), no. 2, 328–346. MR**0506029****[B1]**Ludwig Bröcker,*Zur Theorie der quadratischen Formen über formal reellen Körpern*, Math. Ann.**210**(1974), 233–256 (German). MR**0354549****[B2]**Ludwig Bröcker,*Characterization of fans and hereditarily Pythagorean fields*, Math. Z.**151**(1976), no. 2, 149–163. MR**0422233****[C2]**Thomas C. Craven,*Stability in Witt rings*, Trans. Amer. Math. Soc.**225**(1977), 227–242. MR**0424800**, 10.1090/S0002-9947-1977-0424800-9**[EL]**Richard Elman and T. Y. Lam,*Quadratic forms over formally real fields and pythagorean fields*, Amer. J. Math.**94**(1972), 1155–1194. MR**0314878****[KR]**Jerrold L. Kleinstein and Alex Rosenberg,*Succinct and representational Witt rings*, Pacific J. Math.**86**(1980), no. 1, 99–137. MR**586872****[KRW]**Manfred Knebusch, Alex Rosenberg, and Roger Ware,*Signatures on semilocal rings*, J. Algebra**26**(1973), 208–250. MR**0327761****[L]**T. Y. Lam,*The algebraic theory of quadratic forms*, W. A. Benjamin, Inc., Reading, Mass., 1973. Mathematics Lecture Note Series. MR**0396410****[M1]**M. Marshall,*A reduced theory of quadratic forms*(unpublished).**[M2]**Murray Marshall,*Classification of finite spaces of orderings*, Canad. J. Math.**31**(1979), no. 2, 320–330. MR**528811**, 10.4153/CJM-1979-035-4**[M3]**Murray A. Marshall,*Quotients and inverse limits of spaces of orderings*, Canad. J. Math.**31**(1979), no. 3, 604–616. MR**536366**, 10.4153/CJM-1979-061-4**[R]**Walter Rudin,*Fourier analysis on groups*, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley and Sons), New York-London, 1962. MR**0152834****[S]**Winfried Scharlau,*Quadratic forms*, Queen’s Papers in Pure and Applied Mathematics, No. 22, Queen’s University, Kingston, Ont., 1969. MR**0269679**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
10C05,
12D15

Retrieve articles in all journals with MSC: 10C05, 12D15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1980-0558187-8

Keywords:
Orderings,
Boolean space,
reduced Witt ring,
abstract Witt ring

Article copyright:
© Copyright 1980
American Mathematical Society