Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)


On the Hardy-Littlewood maximal function and some applications

Author: C. J. Neugebauer
Journal: Trans. Amer. Math. Soc. 259 (1980), 99-105
MSC: Primary 42B25; Secondary 28A15
MathSciNet review: 561825
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: With a monotone family $ F\, = \,\{ {S_\alpha }\} ,\,{S_\alpha }\, \subset \,{{\textbf{R}}^n}$, we associate the Hardy-Littlewood maximal function $ {M_F}f(x)\, = \,{\sup _\alpha }(1/\left\vert {{S_\alpha }} \right\vert)\int_{{S_\alpha }\, + \,x} {\left\vert f \right\vert} $. In general, $ {M_F}$ is not weak type (1.1). However, if we replace in the denominator $ {S_\alpha }$ by $ S_F^ {\ast} \, = \,\{ x\, - \,y:\,x,\,y\, \in \,{S_\alpha }\} $, and denote the resulting maximal function by $ M_F^ {\ast} $, then $ M_F^ {\ast} $ is weak type (1, 1) with weak type constant 1.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42B25, 28A15

Retrieve articles in all journals with MSC: 42B25, 28A15

Additional Information

PII: S 0002-9947(1980)0561825-7
Keywords: Hardy-Littlewood maximal function, monotone family, weak type
Article copyright: © Copyright 1980 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia