Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Some examples of sequence entropy as an isomorphism invariant


Author: F. M. Dekking
Journal: Trans. Amer. Math. Soc. 259 (1980), 167-183
MSC: Primary 28D20
DOI: https://doi.org/10.1090/S0002-9947-1980-0561831-2
MathSciNet review: 561831
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: With certain geometrically diverging sequences A and the shift T on dynamical systems arising from substitutions we associate a Markov shift S such that the A-entropy of T equals the usual entropy of S. We present examples to demonstrate the following results. Sequence entropy can distinguish between an invertible ergodic transformation and its inverse. A-entropy does not depend monotonically on A. The variational principle for topological sequence entropy need not hold.


References [Enhancements On Off] (What's this?)

  • [1] E. M. Coven and M. S. Keane, The structure of substitution minimal sets, Trans. Amer. Math. Soc. 162 (1971), 89-102. MR 0284995 (44:2219)
  • [2] F. M. Dekking, The spectrum of dynamical systems arising from substitutions of constant length, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 41 (1978), 221-239. MR 0461470 (57:1455)
  • [3] M. Denker, C. Grillenberger and K. Sigmund, Ergodic theory on compact spaces, Lecture Notes in Math., Vol. 527, Springer-Verlag, Berlin and New York, 1976. MR 0457675 (56:15879)
  • [4] E. Eberlein, On topological entropy of semigroups of commuting transformations, International Conference on Dynamical Systems in Mathematical Physics (Rennes, 1975), pp. 17-62. Astérisque 40 (1976). MR 0453976 (56:12227)
  • [5] F. R. Gantmacher, The theory of matrices, Vol. 2, Chelsea Publishing Co., New York, 1959. MR 0107649 (21:6372c)
  • [6] T. N. T. Goodman, Topological sequence entropy, Proc. London Math. Soc. 29 (1974), 331-350. MR 0356009 (50:8482)
  • [7] W. H. Gottschalk, An irreversible minimal set, Ergodic Theory (Proc. Internat. Sympos., Tulane Univ., New Orleans, La., 1961), Academic Press, New York, 1963, pp. 135-150. MR 0160199 (28:3413)
  • [8] P. Hulse, On the sequence entropy of transformations with quasi-discrete spectrum, University of Warwick, 1978 (preprint).
  • [9] M. Keane, Generalized Morse sequences, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 10 (1968), 335-353. MR 0239047 (39:406)
  • [10] -, Strongly mixing g-measures, Invent. Math. 16 (1972), 309-324. MR 0310193 (46:9295)
  • [11] J. G. Kemeny and J. L. Snell, Finite Markov chains, Van Nostrand, Princeton, N. J., 1960. MR 0115196 (22:5998)
  • [12] M. Komoraikova and J. Komornik, On sequential entropy of measure preserving transformation, International Conference on Dynamical Systems (Warsaw, 1976), pp. 141-144. Astérisque 49 (1977). MR 0486416 (58:6162)
  • [13] E. Krug and D. Newton, On sequence entropy of automorphisms of a Lebesgue space, Z. Wahrscheinlichtkeitstheorie und Verw. Gebiete 24 (1972), 211-214. MR 0322136 (48:500)
  • [14] A. G. Kušnirenko, On metric invariants of entropy type, Russian Math. Surveys 22 (1967), 53-61. MR 0217257 (36:348)
  • [15] N. Markley, Substitution-like minimal sets, Israel J. Math. 22 (1975), 332-353. MR 0391057 (52:11879)
  • [16] D. Newton, On sequence entropy. I, II, Math. Systems Theory 4 (1970), 119-128. MR 0274714 (43:476)
  • [17] W. Parry, Intrinsic Markov chains, Trans. Amer. Math. Soc. 112 (1964), 55-66. MR 0161372 (28:4579)
  • [18] B. S. Pickel', Some properties of A-entropy, Mat. Zametki 5 (1969), 327-334. (Russian) MR 0241603 (39:2942)
  • [19] J. Kwiatkowski, Isomorphism of some Morse dynamical systems, Nicholas Copernicus University, Torun, 1978 (preprint).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28D20

Retrieve articles in all journals with MSC: 28D20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1980-0561831-2
Keywords: Sequence entropy, topological sequence entropy, substitution, Markov shift
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society