Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Statically tame periodic homeomorphisms of compact connected $ 3$-manifolds. II. Statically tame implies tame


Author: Edwin E. Moise
Journal: Trans. Amer. Math. Soc. 259 (1980), 255-280
MSC: Primary 57S17; Secondary 57Q15
DOI: https://doi.org/10.1090/S0002-9947-1980-0561836-1
MathSciNet review: 561836
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let f be a periodic homeomorphism $ M\, \leftrightarrow \,M$, where M is a compact connected 3-manifold (without boundary). Suppose that for each i, the fixed-point set of $ {f^i}$ is a tame set. Then f is simplicial, relative to some triangulation of M.


References [Enhancements On Off] (What's this?)

  • [B1] R. H. Bing, Inequivalent families of periodic homeomorphisms of $ {E^3}$, Ann. of Math. 80 (1964), 78-93. MR 0163308 (29:611)
  • [B2] Locally tame sets are tame, Ann. of Math. (2) 59 (1954), 145-158. MR 0061377 (15:816d)
  • [B3] R. H. Bing and R. J. Bean (eds.), Topology seminar, Wisconsin, 1965, Ann. of Math. Studies, no. 60, Princeton Univ. Press, Princeton, N. J., 1960. MR 0202100 (34:1974)
  • [B4] Armand Borel, Seminar on transformation groups, Ann. of Math. Studies, no. 46, Princeton Univ. Press, Princeton, N. J., 1960. MR 0116341 (22:7129)
  • [H-S] Morris W. Hirsch and Stephen Smale, On involutions of the 3-sphere, Amer. J. Math. 81 (1959), 893-900. MR 0111044 (22:1909)
  • [K2] B. von Kerékjártó, Vorlesungen über Topotogie. I. Flächentopologie, Springer-Verlag, Berlin and New York, 1923.
  • [L] G. R. Livesay, Involutions with two fixed points on the three-sphere, Ann. of Math. 78 (1963), 582-593. MR 0155323 (27:5257)
  • [M] Edwin E. Moise, Statically tame periodic homeomorphisms of compact connected 3-manifolds. I. Homeomorphisms conjugate to rotations of the 3-sphere, Trans. Amer. Math. Soc. 252 (1979), 1-47. MR 534109 (83g:57030a)
  • [M7] -, Affine structures in 3-manifolds. VII. Disks which are pierced by intervals, Ann. of Math. (2) 58 (1953), 403-408. MR 0058208 (15:337b)
  • [M8] -, Affine structures in 3-manifolds. VIII. Invariance of the knot-types; local tame imbedding, Ann. of Math. (2) 59 (1954), 159-170. MR 0061822 (15:889g)
  • [M9] -, Periodic homeomorphisms of the 3-sphere, Illinois J. Math. 6 (1962), 206-225. MR 0150768 (27:755)
  • [MGT] -, Geometric topology in dimensions 2 and 3, Springer-Verlag, Berlin and New York, 1977. MR 0488059 (58:7631)
  • [M-Z] Deane Montgomery and Leo Zippin, Examples of transformation groups, Proc. Amer. Math. Soc. 5 (1954), 460-465. MR 0062436 (15:978f)
  • [R] J. H. Rubinstein, Heegaard splittings and a theorem of Livesay, Proc. Amer. Math. Soc. 60 (1976), 317-320. MR 0420625 (54:8638)
  • [S1] P. A. Smith, Transformations of finite period. II, Ann. of Math. 40 (1939), 690-711. MR 0000177 (1:30c)
  • [S2] -, Periodic transformations of 3-manifolds, Illinois J. Math. 9 (1965), 343-348. MR 0175126 (30:5311)
  • [W] G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R. I., 1942. MR 0007095 (4:86b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57S17, 57Q15

Retrieve articles in all journals with MSC: 57S17, 57Q15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1980-0561836-1
Keywords: Periodic homeomorphism, 3-manifold, fixed-point set
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society