Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The von Neumann kernel and minimally almost periodic groups


Author: Sheldon Rothman
Journal: Trans. Amer. Math. Soc. 259 (1980), 401-421
MSC: Primary 22E15; Secondary 22D05, 43A60
DOI: https://doi.org/10.1090/S0002-9947-1980-0567087-9
MathSciNet review: 567087
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We calculate the von Neumann kernel $ n(G)$ of an arbitrary connected Lie group. As a consequence we see that the closed characteristic subgroup $ n(G)$ is also connected. It is shown that any Levi factor of a connected Lie group is closed. Then, various characterizations of minimal almost periodicity for a connected Lie group are given. Among them is the following. A connected Lie group G with radical R is minimally almost periodic (m.a.p.) if and only if $ G/R$ is semisimple without compact factors and $ G\, = \,{[G,\,G]^ - }$. In the special case where R is also simply connected it is proven that $ G\, = \,[G,\,G]$. This has the corollary that if the radical of a connected m.a.p. Lie group is simply connected then it is nilpotent. Next we prove that a connected m.a.p. Lie group has no nontrivial automorphisms of bounded displacement. As a consequence, if G is a m.a.p. connected Lie group, H is a closed subgroup of G such that $ G/H$ has finite volume, and $ \alpha $ is an automorphism of G with $ {\text{disp}}(\alpha ,\,H)$ bounded, then $ \alpha $ is trivial. Using projective limits of Lie groups we extend most of our results on the characterization of m.a.p. connected Lie groups to arbitrary locally compact connected topological groups, and finally get a new and relatively simple proof of the Freudenthal-Weil theorem.


References [Enhancements On Off] (What's this?)

  • [1] Frank J. Adams, Lectures on Lie groups, Benjamin, New York, 1969. MR 0252560 (40:5780)
  • [2] A. H. Clifford, Representations induced in an invariant subgroup, Ann. of Math. 38 (1937), 533-550. MR 1503352
  • [3] H. Freudenthal, Topologische Gruppen mit genugend vielen fastperiodischen Funktionen, Ann. of Math. 37 (1936), 57-77. MR 1503269
  • [4] H. Furstenberg, A note on Borel's density theorem, Proc. Amer. Math. Soc. 55 (1976), 209-212. MR 0422497 (54:10484)
  • [5] M. Gotô, Faithful representations of Lie groups. I, Math. Japonicae 1 (1948), 107-119. MR 0029919 (10:681a)
  • [6] -, Linear representations of topological groups, Proc. Amer. Math. Soc. 1 (1950), 425-439. MR 0038982 (12:479e)
  • [7] F. P. Greenleaf and M. Moskowitz, Groups of automorphisms of Lie groups: density properties, bounded orbits, and homogeneous spaces of finite volume, Pacific J. Math. (to appear). MR 586869 (81m:22013)
  • [8] F. P. Greenleaf, M. Moskowitz and L. P. Rothschild, Unbounded conjugacy classes in Lie groups and location of central measures, Acta Math. 132 (1974), 225-243. MR 0425035 (54:12993)
  • [9] -, Automorphisms, orbits, and homogeneous spaces of nonconnected Lie groups, Math. Ann. 212 (1974/75), 145-155. MR 0360928 (50:13375)
  • [10] S. Grosser and M. Moskowitz, On central topological groups, Trans. Amer. Math. Soc. 127 (1967), 317-340. MR 0209394 (35:292)
  • [11] -, Compactness conditions in topological groups. I, II, J. Reine Angew. Math. 246 (1971), 1-40. MR 0284541 (44:1766)
  • [12] G. Hochschild, The structure of Lie groups, Holden-Day, San Francisco, Calif., 1965. MR 0207883 (34:7696)
  • [13] T. J. Huang, On topologies of maximally almost periodic groups, Proc. Amer. Math. Soc. 69 (1978), 251-254. MR 0487291 (58:6939)
  • [14] K. Iwasawa, On some types of topological groups, Ann. of Math. 50 (1949), 507-558. MR 0029911 (10:679a)
  • [15] M. Kuranishi, On non-connected maximally almost periodic groups, Tôhoku Math. J. 2 (1950), 40-46. MR 0041861 (13:12e)
  • [16] Y. Matsushima, On the decomposition of an (L)-group, J. Math. Soc. Japan 1 (1950), 264-274. MR 0039735 (12:589f)
  • [17] M. Moskowitz, On proreductive groups, Proc. Cambridge Philos. Soc. 76 (1974), 401-406. MR 0346092 (49:10818)
  • [18] -, Some remarks on automorphisms of bounded displacement and bounded cocycles, Monatsh. Math. 85 (1978), 323-336. MR 510628 (80i:22020)
  • [19] -, On the density theorems of Borel and Furstenberg, Ark. Mat. 16 (1978), 11-27. MR 0507233 (58:22393)
  • [20] S. Murakami, Remarks on the structure of maximally almost periodic groups, Osaka J. Math. 1 (1950), 119-129. MR 0041860 (13:12d)
  • [21] J. von Neumann, Almost periodic functions in a group, Trans. Amer. Math. Soc. 36 (1934), 445-492. MR 1501752
  • [22] J. von Neumann and E. P. Wigner, Minimally almost periodic groups, Ann. of Math. 41 (1940), 746-750. MR 0002891 (2:127e)
  • [23] M. S. Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag, Berlin and New York, 1972. MR 0507234 (58:22394a)
  • [24] J. Tits, Automorphisms a déplacement borné des groupes de Lie, Topology 3 (1964), 97-107.
  • [25] B. L. van der Waerden, Stetigkeitssatzeder halbeinfachen LieschenGruppen, Math. Z. 36 (1933), 780-786.
  • [26] A. Weil, L'integration dans les groupes topologiques et ses applications (2nd ed.), Hermann, Paris, 1965.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E15, 22D05, 43A60

Retrieve articles in all journals with MSC: 22E15, 22D05, 43A60


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1980-0567087-9
Keywords: Von Neumann kernel, minimally almost periodic, maximally almost periodic, automorphism of bounded displacement
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society