Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

An application of homological algebra to the homotopy classification of two-dimensional CW-complexes


Author: Micheal N. Dyer
Journal: Trans. Amer. Math. Soc. 259 (1980), 505-514
MSC: Primary 55P15; Secondary 57M05, 57M20
DOI: https://doi.org/10.1090/S0002-9947-1980-0567093-4
MathSciNet review: 567093
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \pi $ be $ {Z_m}\, \times \,{Z_n}$. In this paper the homotopy types of finite connected two dimensional CW-complexes with fundamental group $ \pi $ are shown to depend only on the Euler characteristic. The basic method is to study the structure of the group $ {\text{Ext}}_{Z\pi }^1(I{\pi ^2},\,Z)$ as a principal $ {\text{End(}}I{\pi ^2}{\text{)}}$-module.


References [Enhancements On Off] (What's this?)

  • [CE] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 0077480 (17:1040e)
  • [D$ _{1}$] M. Dyer, Homotopy classification of ( $ (\pi ,\,m)$, m)-complexes, J. Pure Appl. Algebra 7 (1976), 429-482. MR 0400215 (53:4050)
  • [D$ _{2}$] -, On the essential height of homotopy trees with finite fundamental group, Compositio Math. 36 (1978), 209-224. MR 515046 (80e:57018)
  • [HS] P. Hilton and U. Stammbach, A course in homological algebra, Springer-Verlag, New York, 1970. MR 1438546 (97k:18001)
  • [S] A. Sieradski, Combinatorial isomorphisms and combinatorial homotopy equivalences, J. Pure Appl. Algebra 7 (1976), 59-95. MR 0405434 (53:9227)
  • [SD] A. Sieradski and M. Dyer, Distinguishing arithmetic for certain stably isomorphic modules, J. Pure Appl. Algebra 15 (1979), 199-217. MR 535186 (80k:20007)
  • [SE] R. G. Swan and E. G. Evans, K-theory of finite groups and orders, Lecture Notes in Math., vol. 149, Springer-Verag, Berlin and New York, 1970. MR 0308195 (46:7310)
  • [U] S. Ullom, Non-trivial lower bounds for class groups of integral group rings, Illinois J. Math. 20 (1976), 314-329. MR 0393214 (52:14024)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55P15, 57M05, 57M20

Retrieve articles in all journals with MSC: 55P15, 57M05, 57M20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1980-0567093-4
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society