Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Quasilinear evolution equations in Banach spaces


Author: Michael G. Murphy
Journal: Trans. Amer. Math. Soc. 259 (1980), 547-557
MSC: Primary 34G20; Secondary 47D05
DOI: https://doi.org/10.1090/S0002-9947-1980-0567096-X
MathSciNet review: 567096
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with the quasi-linear evolution equation $ u'(t)\, + \,A(t,\,u(t))u(t)\, = \,0$ in $ [0,\,T],\,u(0)\, = \,{x_0}$ in a Banach space setting. The spirit of this inquiry follows that of T. Kato and his fundamental results concerning linear evolution equations. We assume that we have a family of semigroup generators that satisfies continuity and stability conditions. A family of approximate solutions to the quasi-linear problem is constructed that converges to a ``limit solution.'' The limit solution must be the strong solution if one exists. It is enough that a related linear problem has a solution in order that the limit solution be the unique solution of the quasi-linear problem. We show that the limit solution depends on the initial value in a strong way. An application and the existence aspect are also addressed.


References [Enhancements On Off] (What's this?)

  • [1] P. L. Butzer and H. Berens, Semi-groups of operators and approximation, Springer-Verlag, Berlin, 1967. MR 0230022 (37:5588)
  • [2] P. R. Chernoff and J. A. Goldstein, Admissible subspaces and the denseness of the intersection of the domains of semigroup generators, J. Functional Analysis 9 (1972), 460-468. MR 0298465 (45:7517)
  • [3] M. G. Crandall and L. C. Evans, On the relation of the operator $ \partial /\partial s\, + \,\partial /\partial \tau $ to evolution governed by accretive operators, Israel J. Math. 21 (1975), 261-278. MR 0390853 (52:11676)
  • [4] J. R. Dorroh, A class of nonlinear evolution equations in a Banach space, Trans. Amer. Math. Soc. 147 (1970), 65-74. MR 0253085 (40:6300)
  • [5] -, A simplified proof of a theorem of Kato on linear evolution equations, J. Math. Soc. Japan 27 (1975), 474-478. MR 0380504 (52:1404)
  • [6] N. Dunford and J. T. Schwartz, Linear operators. Part I: General theory, Interscience, New York, 1958. MR 1009162 (90g:47001a)
  • [7] A. Friedman, Partial differential equations, Holt, New York, 1969. MR 0445088 (56:3433)
  • [8] E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., no. 31, Amer. Math. Soc., Providence, R. I., 1957. MR 0089373 (19:664d)
  • [9] T. Kato, Integration of the equation of evolution in a Banach space, J. Math. Soc. Japan 5 (1953), 208-234. MR 0058861 (15:437b)
  • [10] -, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1966. MR 0203473 (34:3324)
  • [11] -, Linear evolution equations of 'hyperbolic' type, J. Fac. Sci. Univ. Tokyo Sect. I A Math. 17 (1970), 241-258. MR 0279626 (43:5347)
  • [12] -, Linear evolution equations of 'hyperbolic' type. II, J. Math. Soc. Japan 25 (1973), 648-666. MR 0326483 (48:4827)
  • [13] -, Quasi-linear equations of evolution, with applications to partial differential equations, Lecture Notes in Math., vol. 448, Springer-Verlag, Berlin, 1975, pp. 25-70. MR 0407477 (53:11252)
  • [14] T. Kato and H. Tanabe, On the abstract evolution equation, Osaka J. Math. 14 (1962), 107-133. MR 0140954 (25:4367)
  • [15] -, On the analyticity of solution of evolution equations, Osaka J. Math. 4 (1967), 1-4. MR 0222430 (36:5482)
  • [16] Y. Kobayashi, Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups, J. Math. Soc. Japan 27 (1975), 640-665. MR 0399974 (53:3812)
  • [17] Y. Komura, Nonlinear semi-groups in Hilbert space, J. Math. Soc. Japan 19 (1967), 505-507. MR 0216342 (35:7176)
  • [18] G. E. Ladas and V. Lakshmikantham, Differential equations in abstract spaces, Academic Press, New York, 1972. MR 0460832 (57:824)
  • [19] P. E. Sobolevskii, Equations of parabolic type in a Banach space, Amer. Math. Soc. Transl. (2) 49 (1966), 1-62.
  • [20] H. Tanabe, A class of the equations of evolution in a Banach space, Osaka J. Math. 11 (1959), 121-145. MR 0114137 (22:4964)
  • [21] -, Remarks on the equations of evolution in a Banach space, Osaka J. Math. 12 (1960), 145-166. MR 0125454 (23:A2756a)
  • [22] -, On the equations of evolution in a Banach space, Osaka J. Math. 12 (1960), 363-376. MR 0125455 (23:A2756b)
  • [23] K. Yosida, Functional analysis, 3rd ed., Springer-Verlag, Berlin, 1971.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34G20, 47D05

Retrieve articles in all journals with MSC: 34G20, 47D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1980-0567096-X
Keywords: Quasi-linear evolution equations, Banach space, evolution operator, strongly continuous semigroup
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society