Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Hermite-Birkhoff interpolation in the $ n$th roots of unity


Authors: A. S. Cavaretta, A. Sharma and R. S. Varga
Journal: Trans. Amer. Math. Soc. 259 (1980), 621-628
MSC: Primary 30E05
MathSciNet review: 567101
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Consider, as nodes for polynomial interpolation, the nth roots of unity. For a sufficiently smooth function $ f(z)$, we require a polynomial $ p(z)$ to interpolate f and certain of its derivatives at each node. It is shown that the so-called Pólya conditions, which are necessary for unique interpolation, are in this setting also sufficient.


References [Enhancements On Off] (What's this?)

  • [1] O. Kiš, On trigonometric (0,2)-interpolation, Acta Math. Acad. Sci. Hungar. 11 (1960), 255–276 (Russian). MR 0126666 (23 #A3961)
  • [2] G. G. Lorentz and S. D. Riemenschneider, Recent progress in Birkhoff interpolation, Approximation theory and functional analysis (Proc. Internat. Sympos. Approximation Theory, Univ. Estadual de Campinas, Campinas, 1977) North-Holland Math. Stud., vol. 35, North-Holland, Amsterdam-New York, 1979, pp. 187–236. MR 553421 (81a:41006)
  • [3] -, Birkhoff interpolation (to appear).
  • [4] G. Pólya, Bemerkungen zur Interpolation und zur Näherungstheorie der Balkenbiegung, Z. Angew. Math. Mech. 11 (1931), 445-449.
  • [5] I. J. Schoenberg, Zur Abzählung der reellen Wurzeln algebraischer Gleichungen, Math. Z. 38 (1934), no. 1, 546–564 (German). MR 1545467, http://dx.doi.org/10.1007/BF01170654
  • [6] A. Sharma, Some remarks on lacunary interpolation in the roots of unity, Israel J. Math. 2 (1964), 41–49. MR 0170148 (30 #388)
  • [7] A. Sharma, Lacunary interpolation in the roots of unity, Z. Angew. Math. Mech. 46 (1966), 127–133 (English, with German and Russian summaries). MR 0198057 (33 #6216)
  • [8] A. Sharma, Some poised and nonpoised problems of interpolation, SIAM Rev. 14 (1972), 129–151. MR 0313676 (47 #2230)
  • [9] A. Sharma and J. Tzimbalario, Some strongly non-poised H-B problems, J. Math. Anal. Appl. 63 (1978), no. 2, 521–524. MR 0481740 (58 #1839)
  • [10] P. L. J. van Rooij, F. Schurer and C. R. van Walt van Praag, A bibliography on Hermite-Birkhoff interpolation, Dept. of Mathematics, Eindhoven University of Technology, Dec. 1975, Eindhoven, The Nederland.
  • [11] Zia-Uddin, Note on an ``alternant'' with factorial elements, Proc. Edinburgh Math. Soc. 3 (1933), 296-299.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30E05

Retrieve articles in all journals with MSC: 30E05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1980-0567101-0
PII: S 0002-9947(1980)0567101-0
Keywords: Lacunary interpolation, the roots of unity, Pólya condition, Hermite-Birkhoff interpolation
Article copyright: © Copyright 1980 American Mathematical Society