Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Homological algebra on a complete intersection, with an application to group representations


Author: David Eisenbud
Journal: Trans. Amer. Math. Soc. 260 (1980), 35-64
MSC: Primary 13D25; Secondary 13H10, 14M10, 18G10, 20C20
DOI: https://doi.org/10.1090/S0002-9947-1980-0570778-7
MathSciNet review: 570778
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let R be a regular local ring, and let $ A\, = \,R/(x)$, where x is any nonunit of R. We prove that every minimal free resolution of a finitely generated A-module becomes periodic of period 1 or 2 after at most $ \operatorname{dim} \, A$ steps, and we examine generalizations and extensions of this for complete intersections. Our theorems follow from the properties of certain universally defined endomorphisms of complexes over such rings.


References [Enhancements On Off] (What's this?)

  • [A1] J. Alperin, Resolutions for finite groups, Internat. Sympos. on Theory of Finite Groups (Sapporo, Japan, 1974).
  • [A2] -, Periodicity in groups, Illinois J. Math. (to appear). MR 0450381 (56:8676)
  • [B] H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28. MR 0153708 (27:3669)
  • [Bou] N. Bourbaki, Algèbre, Chapitres I-III, Hermann, Paris, 1970. MR 0274237 (43:2)
  • [B-E 0] D. A. Buchsbaum and D. Eisenbud, Lifting modules and a theorem on finite free resolutions, Ring Theory, Academic Press, New York, 1972. MR 0340343 (49:5098)
  • [B-E 1] -, Algebra structures on resolutions, and some structure theorems for ideals of height 3, Amer. J. Math. (1977).
  • [B-E 2] -, Generic free resolutions and a family of generically perfect ideals, Advances in Math. (1976).
  • [B-E 3] -, What annihilates a module?, J. Algebra 47 (1977), 231-243. MR 0476736 (57:16293)
  • [C] J. Carlson, The dimensions of periodic modules over modular group algebras, Illinois J. Math. 23 (1979), 295-306. MR 528565 (80d:20007)
  • [EGA] A. Grothendieck, Éléments de géométrie algébrique, Chapitre IV, part 2, Inst. Hautes Études Sci. Publ. Math. 24 (1965). MR 0199181 (33:7330)
  • [EV] L. Evens, The cohomology ring of a finite group. Trans. Amer. Math. Soc. 101 (1961), 224-239. MR 0137742 (25:1191)
  • [G1] T. Gulliksen, A proof of the existence of minimal R-algebra resolutions, Acta Math. 120 (1968). MR 0224607 (37:206)
  • [G2] -, A change of rings theorem, with application to Poincaré series and intersection multiplicity, Math. Scand. 34 (1974), 167-183. MR 0364232 (51:487)
  • [G-L] T. Gulliksen and G. Levin, Homology of local rings, Queen's Papers in Pure and Appl. Math., vol. 20, Queen's Univ., Kingston, Ontario, 1969. MR 0262227 (41:6837)
  • [Kap] I. Kaplansky, Commutative rings, 2nd ed., University of Chicago Press, Chicago, Ill., 1974. MR 0345945 (49:10674)
  • [L-V] G. Levin and W. Vasconcelos, Homological dimensions and Macaulay rings, Pacific J. Math. 25 (1968). MR 0230715 (37:6275)
  • [Mat] H. Matsumura, Commutative algebra, Benjamin, New York, 1970. MR 0266911 (42:1813)
  • [M] V. Mehta, Thesis, University of California, Berkeley, Calif., 1976.
  • [Nag] M. Nagata, Local rings, Interscience, New York, 1962. MR 0155856 (27:5790)
  • [Nas] H.-J. Nastold, Zur Serreschen Multiplizitätstheorie in der arithmetischen Geometrie, Math. Ann. 143 (1961), 333-343. MR 0125858 (23:A3155)
  • [S] J. P. Serre, Algèbre local-multiplicité, 3rd ed., Lecture Notes in Math., vol. 11, Springer-Verlag, New York, 1975.
  • [Sh] J. Shamash, The Poincaré series of a local ring. I, J. Algebra 12 (1969), 453-470. MR 0241411 (39:2751)
  • [Tate] J. Tate, Homology of Noetherian rings and local rings, Illinois J. Math. 1 (1957), 14-27. MR 0086072 (19:119b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 13D25, 13H10, 14M10, 18G10, 20C20

Retrieve articles in all journals with MSC: 13D25, 13H10, 14M10, 18G10, 20C20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1980-0570778-7
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society