Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the topology of simply connected algebraic surfaces


Authors: Richard Mandelbaum and Boris Moishezon
Journal: Trans. Amer. Math. Soc. 260 (1980), 195-222
MSC: Primary 14J99; Secondary 57R99
DOI: https://doi.org/10.1090/S0002-9947-1980-0570786-6
MathSciNet review: 570786
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose x is a smooth simply-connected compact 4-manifold. Let $ p\, = \,{\textbf{C}}{P^2}$ and $ Q\, = \, - {\textbf{C}}{P^2}$ be the complex projective plane with orientation opposite to the usual. We shall say that X is completely decomposable if there exist integers a, b such that X is diffeomorphic to $ aP\,{\text{\char93 }}\,bQ$.

By a result of Wall [W1] there always exists an integer k such that $ X\,\char93 \,(k\, + \,1)P\,\char93 kQ$ is completely decomposable. If $ X\,\char93 \,P$ is completely decomposable we shall say that X is almost completely decomposable. In [MM] we demonstrated that any nonsingular hypersurface of $ {\textbf{C}}{P^3}$ is almost completely decomposable. In this paper we generalize this result in two directions as follows:

Theorem 3.5. Suppose W is a simply-connected nonsingular complex projective 3-fold. Then there exists an integer $ {m_0}\, \geqslant \,1$ such that any hypersurface section $ {V_m}$ of W of degree $ m\, \geqslant \,{m_0}$ which is nonsingular will be almost completely decomposable.

Theorem 5.3. Let V be a nonsingular complex algebraic surface which is a complete intersection. Then V is almost completely decomposable.


References [Enhancements On Off] (What's this?)

  • [A] J. W. Alexander, Note on Riemann spaces, Bull. Amer. Math. Soc. 26 (1920), 370-377. MR 1560318
  • [E] C. J. Earle and J. Eells, The diffeomorphism group of a compact Riemann surface, Bull. Amer. Math. Soc. 73 (1967), 557-560. MR 0212840 (35:3705)
  • [Gf] P. A. Griffiths, Periods of integrals on algebraic manifolds, Bull. Amer. Math. Soc. 76 (1970), 228-296. MR 0258824 (41:3470)
  • [GR] R. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, N. J., 1965. MR 0180696 (31:4927)
  • [H] R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Math., vol. 156, Springer-Verlag, Berlin and New York, 1970. MR 0282977 (44:211)
  • [Hor] E. Horikawa, Algebraic surfaces of general type. I, II, Ann. of Math. (2) 104 (1976), 357-387; Invent. Math. 37 (1976), 121-155. MR 0460340 (57:334)
  • [KM] K. Kodaira and J. Morrow, Complex manifolds, Holt Rinehart and Winston, New York, 1971. MR 0302937 (46:2080)
  • [M] R. Mandelbaum, Irrational connected sums and the topology of algebraic surfaces, Trans. Amer. Math. Soc. 247 (1979), 137-156. MR 517689 (80e:57023)
  • [MM] R. Mandelbaum and B. Moishezon, On the topological structure of non-singular algebraic surfaces in $ {\textbf{C}}{P^3}$, Topology 1 (1976). MR 0405458 (53:9251)
  • [Msh] B. Moishezon, Complex surfaces, Lecture Notes in Math., vol. 603, Springer-Verlag, Berlin and New York, 1977.
  • [SR] J. G. Semple and L. Roth, Algebraic geometry, Clarendon Press, Oxford, 1949. MR 0034048 (11:535d)
  • [S] S. Smale, Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc. 10 (1959), 621-626. MR 0112149 (22:3004)
  • [Sf1] I. R. Shaferevich, Basic algebraic geometry, Springer-Verlag, Berlin and New York, 1974. MR 0366917 (51:3163)
  • [Sf2] -, ed., Algebraic surfaces, Proc. Steklov Inst. Math. 75 (1965). MR 0215850 (35:6685)
  • [T] R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86. MR 0061823 (15:890a)
  • [W1] C. T. C. Wall, Diffeomorphisms of 4-manifolds, J. London Math. Soc. 39 (1964), 131-140. MR 0163323 (29:626)
  • [W2] -, On simply-connected 4-manifolds, J. London Math. Soc. 39 (1964), 141-149. MR 0163324 (29:627)
  • [Wv] J. J. Wavrik, Deformations of Banach coverings of complex manifolds, Amer. J. Math. 90 (1968), 926-960. MR 0233384 (38:1706)
  • [Z] O. Zariski, Introduction to the problem of minimal models in the theory of algebraic surfaces, Publ. Math. Soc. Japan, no. 4, Math. Soc. Japan, Tokyo, 1958. MR 0097403 (20:3872)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 14J99, 57R99

Retrieve articles in all journals with MSC: 14J99, 57R99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1980-0570786-6
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society