Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



A representation theorem and applications to topological groups

Author: J.-M. Belley
Journal: Trans. Amer. Math. Soc. 260 (1980), 267-279
MSC: Primary 43A35; Secondary 28A25, 43A60
MathSciNet review: 570789
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that, given a set S dense in a compact Hausdorff space X and a complex-valued bounded linear functional $ \Lambda $ on the space $ C(X)$ of continuous complex-valued functions on X with uniform norm, there exist an algebra $ {\mathcal{A}}$ of sets in S and a unique bounded finitely additive set function $ \mu :\,{\mathcal{A}}\, \to \,{\textbf{C}}$ which is inner and outer regular with respect to the zero and cozero sets respectively and such that $ \int_s {f\left\vert S \right.\,d\mu } $ exists and is equal to $ \Lambda (f)$ for all $ f\, \in \,C(X)$. In the context of topological groups, this theorem permits us to obtain (1) a concrete representation theorem for bounded complex-valued linear functionals on the space of almost periodic functions with uniform norm, (2) a representation theorem for (not necessarily continuous) positive definite functions, (3) a characterization of the space B of finite linear combinations of positive definite functions, and (4) a necessary and sufficient condition to have a linear transformation from B to B.

References [Enhancements On Off] (What's this?)

  • [1] R. B. Darst, A note on abstract integration, Trans. Amer. Math. Soc. 99 (1961), 292-297. MR 0120337 (22:11092)
  • [2] N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
  • [3] U. an der Heiden, On the representation of linear functionals by finitely additive set functions,Arch. Math. 30 (1978), 210-214. MR 493598 (80f:28004)
  • [4] E. Hewitt, Linear functionals on almost periodic functions, Trans. Amer. Math. Soc. 74 (1953), 303-322. MR 0054169 (14:882d)
  • [5] E. Hewitt and K. A. Ross, Abstract harmonic analysis. I, II, Springer-Verlag, New York, 1963.
  • [6] S. S. Khurana, Lattice valued Borel measures. II, Trans. Amer. Math. Soc. 235 (1978), 205-211. MR 0460590 (57:583)
  • [7] S. Leader, On universally integrable functions, Proc. Amer Math. Soc. 6 (1955), 232-234. MR 0067961 (16:805c)
  • [8] L. H. Loomis, An introduction to harmonic analysis, Van Nostrand, New York, 1953. MR 0054173 (14:883c)
  • [9] -, Linear functionals and content, Amer. J. Math. 76 (1954), 168-182. MR 0060145 (15:631d)
  • [10] D. Pollard and F. Topsøe, A unified approach to Riesz type representation theorems, Studia Math. 54 (1975), 173-190. MR 0393409 (52:14219)
  • [11] P. C. Rosenbloom, Quelques classes de problèmes extrémaux, Bull. Soc. Math. France 80 (1952), 183-215.
  • [12] W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966. MR 0210528 (35:1420)
  • [13] -, Fourier analysis on groups, Interscience, New York, 1967.
  • [14] G. E. Sinclair, A finitely additive generalization of the Fichtenholz-Lichtenstein theorem, Trans. Amer. Math. Soc. 193 (1974), 359-374. MR 0417371 (54:5423)
  • [15] A. Taylor, Introduction to functional analysis, Wiley, New York, 1958. MR 0098966 (20:5411)
  • [16] F. Topsøe, Further results on integral representations, Studia Math. 55 (1976), 239-245. MR 0425061 (54:13019)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A35, 28A25, 43A60

Retrieve articles in all journals with MSC: 43A35, 28A25, 43A60

Additional Information

Keywords: Algebras of sets, finitely additive set functions, integral representation of linear functionals, Bohr compactification, almost periodic functions, positive definite functions, Fourier-Stieltjes transforms
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society