A characterization of periodic automorphisms of a free group

Author:
James McCool

Journal:
Trans. Amer. Math. Soc. **260** (1980), 309-318

MSC:
Primary 20E05; Secondary 20E36

DOI:
https://doi.org/10.1090/S0002-9947-1980-0570792-1

MathSciNet review:
570792

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be an automorphism of finite order of a free group *X*. We characterise the action of on *X* by showing that *X* has a free basis which is the disjoint union of finite subsets , where if then and for some , in *X* and . As an application of this result, we obtain a list of the conjugacy classes of periodic automorphisms of the free group of rank three.

**[1]**Daniel E. Cohen,*Group with free subgroups of finite index*, Conference on Group Theory (Univ. Wisconsin-Parkside, Kenosha, Wis., 1972), Springer, Berlin, 1973, pp. 26–44. Lecture Notes in Math., Vol. 319. MR**0430075****[2]**Joan L. Dyer and G. Peter Scott,*Periodic automorphisms of free groups*, Comm. Algebra**3**(1975), 195–201. MR**0369529**, https://doi.org/10.1080/00927877508822042**[3]**P. J. Higgins,*The fundamental groupoid of a graph of groups*, J. London Math. Soc. (2)**13**(1976), no. 1, 145–149. MR**0401927**, https://doi.org/10.1112/jlms/s2-13.1.145**[4]**W. Magnus, A. Karrass and D. Solitar,*Combinatorial group theory*, Wiley (Interscience), New York, 1966.**[5]**A. Karrass, A. Pietrowski, and D. Solitar,*Finite and infinite cyclic extensions of free groups*, J. Austral. Math. Soc.**16**(1973), 458–466. Collection of articles dedicated to the memory of Hanna Neumann, IV. MR**0349850****[6]**Stephen Meskin,*Periodic automorphisms of the two-generator free group*, Proceedings of the Second International Conference on the Theory of Groups (Australian Nat. Univ., Canberra, 1973) Springer, Berlin, 1974, pp. 494–498. Lecture Notes in Math., Vol. 372. MR**0369551****[7]**G. P. Scott,*An embedding theorem for groups with a free subgroup of finite index*, Bull. London Math. Soc.**6**(1974), 304–306. MR**0357614**, https://doi.org/10.1112/blms/6.3.304**[8]**J. P. Serre,*Arbres, amalgames*, , Astérisque 46, Société Mathématique de France, 1977.**[9]**M. D. Tretkoff,*A topological approach to HNN extensions and the theory of groups acting on trees*, preprint.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
20E05,
20E36

Retrieve articles in all journals with MSC: 20E05, 20E36

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1980-0570792-1

Article copyright:
© Copyright 1980
American Mathematical Society