Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A separation theorem for $ \Sigma \sp{1}\sb{1}$ sets


Author: Alain Louveau
Journal: Trans. Amer. Math. Soc. 260 (1980), 363-378
MSC: Primary 04A15; Secondary 03E15, 26A21, 28A05, 54H05
DOI: https://doi.org/10.1090/S0002-9947-1980-0574785-X
MathSciNet review: 574785
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we show that the notion of Borel class is, roughly speaking, an effective notion. We prove that if a set A is both $ \prod _\xi ^0$ and $ \Delta _1^1$, it possesses a $ \Pi _\xi ^0$-code which is also $ \Delta _1^1$. As a by-product of the induction used to prove this result, we also obtain a separation result for $ \Sigma _1^1$ sets: If two $ \Sigma _1^1$ sets can be separated by a $ \Pi _\xi ^0$ set, they can also be separated by a set which is both $ \Delta _1^1$ and $ \Pi _\xi ^0$.

Applications of these results include a study of the effective theory of Borel classes, containing separation and reduction principles, and an effective analog of the Lebesgue-Hausdorff theorem on analytically representable functions. We also give applications to the study of Borel sets and functions with sections of fixed Borel class in product spaces, including a result on the conservation of the Borel class under integration.


References [Enhancements On Off] (What's this?)

  • [Bo1] J. Bourgain, Decompositions in the product of a measure space and a Polish space, Fund. Math. (to appear). MR 558129 (81a:28002)
  • [Bo2] -, $ {F_{\sigma \delta }}$-sections of Borel sets, Fund. Math. (to appear). MR 584665 (81k:54068a)
  • [Bo3] -, Borel sets with $ {F_{\sigma \delta }}$-sections (unpublished).
  • [Bu] J. Burgess, Effective Hausdorff resolution (unpublished).
  • [Ce] D. Cenzer, Monotone inductive definitions over the continuum, J. Symbolic Logic 41 (1976), 188-198. MR 0427054 (55:90)
  • [De] C. Dellacherie, Ensembles analytiques: Théorèmes de séparation et applications, Lecture Notes in Math., vol. 465, Springer-Verlag, Berlin and New York, 1976, pp. 336-372. MR 0428306 (55:1331)
  • [Ha] L. Harrington, A powerless proof of a theorem of Silver (circulated manuscript).
  • [Ke] A. S. Kechris, Course on descriptive set theory (circulated manuscript).
  • [Ku] K. Kuratowski, Topology, Vol. 1, Academic Press, New York and London, 1966. MR 0217751 (36:840)
  • [Lo1] A. Louveau, Recursivity and compactness, Higher Set Theory, Lecture Notes in Math., vol. 669, Springer-Verlag, Berlin and New York, 1978, pp. 303-337. MR 520192 (80j:03071)
  • [Lo2] -, Boréliens à coupes $ {K_{\sigma \delta }}$, C. R. Acad. Sci. Paris 285 (1977), 309-312.
  • [Lo3] -, La hiérarchie borélienne des ensembles $ \Delta _1^1$, C. R. Acad. Sci. Paris Sér A-B 285 (1977), 601-604. MR 0446982 (56:5299)
  • [Lo4] -, Sur les fonctions boréliennes de plusieurs variables, C. R. Acad. Sci. Paris 285 (1977), 1037-1039. MR 0583547 (58:28388)
  • [Mo] Y. N. Moschovakis, Descriptive set theory (forthcoming). MR 561709 (82e:03002)
  • [StR] J. Saint-Raymond, Boréliens à coupes $ {K_\sigma }$, Bull. Soc. Math. France 104 (1976), 389-400. MR 0433418 (55:6394)
  • [GMS] S. Grigorief, K. Mc Aloon and J. Stern, Séminaire de théorie des ensembles, 1976-1977, Publ. de Paris VII.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 04A15, 03E15, 26A21, 28A05, 54H05

Retrieve articles in all journals with MSC: 04A15, 03E15, 26A21, 28A05, 54H05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1980-0574785-X
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society