Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Every contractible fan is locally connected at its vertex


Author: Lex G. Oversteegen
Journal: Trans. Amer. Math. Soc. 260 (1980), 379-402
MSC: Primary 54F20; Secondary 54F25
DOI: https://doi.org/10.1090/S0002-9947-1980-0574786-1
MathSciNet review: 574786
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that each contractible fan is locally connected at its vertex. It follows that every contractible fan is embeddable in the plane. This gives a solution to a problem raised by J. J. Charatonik and C. A. Eberhart.


References [Enhancements On Off] (What's this?)

  • [1] David P. Bellamy and Janusz J. Charatonik, The set function 𝑇 and contractibility of continua, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), no. 1, 47–49 (English, with Russian summary). MR 0500858
  • [2] Karol Borsuk, A countable broom which cannot be imbedded in the plane, Colloq. Math. 10 (1963), 233–236. MR 0155300
  • [3] J. J. Charatonik and C. A. Eberhart, On contractible dendroids, Colloq. Math. 25 (1972), 89–98, 164. MR 0309082
  • [4] J. J. Charatonik, Problems and remarks on contractibility of curves, General topology and its relations to modern analysis and algebra, IV (Proc. Fourth Prague Topological Sympos., Prague, 1976) Soc. Czechoslovak Mathematicians and Physicists, Prague, 1977, pp. 72–76. MR 0464197
  • [5] J. J. Charatonik and Z. Grabowski, Homotopically fixed arcs and the contractibility of dendroids, Fund. Math. 100 (1978), no. 3, 229–237. MR 509549
  • [6] G. B. Graham, On contractible fans, Doctoral Dissertation, Univ. of California, Riverside, Calif., 1977.
  • [7] K. Kuratowski, Topology. Vol. II, New edition, revised and augmented. Translated from the French by A. Kirkor, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw, 1968. MR 0259835
  • [8] J. Mioduszewski, Everywhere oscillating functions, extension of the uniformization and homogeneity of the pseudo-arc, Fund. Math. 56 (1964), 131–155. MR 0176452
  • [9] Lex G. Oversteegen, Noncontractibility of continua, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), no. 9-10, 837–840 (English, with Russian summary). MR 518989
  • [10] Lex G. Oversteegen, Fans and embeddings in the plane, Pacific J. Math. 83 (1979), no. 2, 495–503. MR 557948
  • [11] -, Properties of contractible fans, Doctoral dissertation, Wayne State Univ., Detroit, Mich., 1978.
  • [12] Lex G. Oversteegen, An uncountable collection of noncontractible fans, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), no. 5, 385–389 (English, with Russian summary). MR 557407
    Lex G. Oversteegen, Internal characterizations of contractibility for fans, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), no. 5, 391–395 (English, with Russian summary). MR 557408

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54F20, 54F25

Retrieve articles in all journals with MSC: 54F20, 54F25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1980-0574786-1
Article copyright: © Copyright 1980 American Mathematical Society